• Title/Summary/Keyword: T-Girder

Search Result 103, Processing Time 0.02 seconds

Analysis on Visual Preference of Bridge Landscapes of Background and Shape in Rural Area - Focused on the Natural Landscape in Rural Area - (농촌지역의 교량의 배경경관 및 교량형태에 따른 시각적 선호도 분석 - 농촌지역 자연경관을 중심으로 -)

  • Chun, Hyun-jin;Jiang, Long;Cheng, Yu-ning
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.2
    • /
    • pp.89-98
    • /
    • 2016
  • Due to the rapid economic development of Korea, the bridge have been built by government over the several years. Additionally, there are too many mountain and river and the bridge have been built in rural area. But bridge designers weren't considering the bridge landscape. And bridge was a negative factor in regional landscape. Because of this, this study surveyed the landscape preferences of rural bridge landscapes according to different bridge types. The results were summarized as follows: And this research include conducting a study on visual preference according to the bridge's type and background. And, the landscape of arch bridge in the river 1 is landscape of the highest preference. The the landscape of girder bridge in the river 2 is landscape of the lowest preference. In the river 1 and 2 landscape, high preference is observed in the arch bridge and low preference is noted in the girder bridge. In the mountain 1 and 2 landscape, high preference is observed in the cable-stayed bridge and low preference is noted in the girder bridge. In conclusion, the visual preference of bridge landscape depend on the background and bridge shape, the study said. Therefore, when bridge designer design the bridge, designer have to choose proper bridge shape according to the background. This research was conducted only in bridge landscape of rural area but the visual preference of bridge landscape can be changed according to the various background. And further research is needed to analyze visual preference of bridge landscape according to the various background.

A new bridge-vehicle system part I: Formulation and validation

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2003
  • This paper presents the formulation of a new bridge-vehicle system with validation using the field data. Both pitching and twisting modes of the vehicle are considered in the contribution of the dynamic effects in the bridge responses. A heavy vehicle was hired as a control vehicle with known axle weight, axle spacing and spring coefficients. The measured responses were generated from the control vehicle running at a particular speed at a test span at Ma Tau Wai Flyover. The measured responses were acquired using strain gauges installed beneath the girder beams of the test bridge. The simulated responses were generated using BRVEAN that is a self-developed program based on the proposed bridge-vehicle system. The validation shows that the bridge model is valid for representing the test bridge and the governing equations are valid for representing the motion of moving vehicles.

Nonlinear Failure Analysis of Reinforced Concrete Structures using Fiber Model (파이버모델에 의한 철근콘크리트 구조물의 비선형 파괴해석)

  • 송하원;김일철;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.127-134
    • /
    • 1998
  • The objectives of this paper is to analyze the reinforced concrete structures by using fiber model. In this study, the fiber modeling techniques including modeling of support conditions are studied. In order to verify the modeling techniques, analysis results obtained for reinforced concrete cantilever beam and reinforced concrete T-girder bridge under cyclic loading are compared with experimental results from full scale test. From the comparison, it is shown that the modeling techniques in this study can be well applied to the nonlinear failure analysis of reinforced concrete structures with porper modifications.

  • PDF

Approximate Analysis of Shock Response for Ship Hull Girder (선체거더 충격응답의 근사해석)

  • Song, C.T.;Park, B.W.;An, C.W.;Cho, Y.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.75-84
    • /
    • 1996
  • The structural response of naval surface ships subjected to underwater shock loadings is a very important problem in viewpoint ship survivability. In practice, among others the case of noncontact underwater explosions is the only one shock loading considered in designing naval surface ships to resist underwater explosions. In orator to efficiently design naval surface ships and their equipment to resist such shock loadings it seems necessary to prepare theoretical analysis tools and/or empirical design criteria which can predict the three dimensional transmission of shock waves. This paper describes a simplified method to analyse shock responses for ship hull girder, which uses a loading function to approximate the shock loadings on ship structures due to noncontact underwater explosions. A couple of examples to apply this method are provided.

  • PDF

Design of End Diaphragms in PSC Box Girder Bridges Using a Strut-and-Tie Model (스트럿-타이 모델을 이용한 PSC 박스거더 교량의 End Diaphragm의 설계 연구)

  • 이창훈;윤영수;이만섭;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.961-966
    • /
    • 2003
  • In recent, the design of diaphragm which is representative disturbed region in PSC box girder bridge have been performed according to the empirical method or beam theory. But, these methods couldn't be described the behavior of the end diaphragm, and placed reinforcements accurately. As the compressive stress transferred by the web concentrated on the lower parts of diaphragm, it was demonstrated that the basic assumption of 2-D strut-and-tie model for the diaphragm that the compressive stress acts on the upper parts of the diaphragm is wrong. Meanwhile, in this research, after analyzing the variables of end diaphragm, the 2-D strut-and-tie models appropriate to each cases are proposed. And, the problems of 2-D strut-and-tie model were analyzed, so 3-D strut-and-tie model is proposed as well. There is no codes which include the demonstration of safety of 3-D strut-and-tie model. Hence, for nodes, the stresses at the elements which included the singular node in strut-and-tie model were investigated using the finite element analysis. And, the stress states of strut has one direction, so effective stresses were considered at the stage, dimensioning of the model. From the results, 3-D strut-and-tie model could predict the behavior of end diaphragm accurately, and design of reinforcement could be performed economically.

  • PDF

Bayesian demand model based seismic vulnerability assessment of a concrete girder bridge

  • Bayat, M.;Kia, M.;Soltangharaei, V.;Ahmadi, H.R.;Ziehl, P.
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.337-343
    • /
    • 2020
  • In the present study, by employing fragility analysis, the seismic vulnerability of a concrete girder bridge, one of the most common existing structural bridge systems, has been performed. To this end, drift demand model as a fundamental ingredient of any probabilistic decision-making analyses is initially developed in terms of the two most common intensity measures, i.e., PGA and Sa (T1). Developing a probabilistic demand model requires a reliable database that is established in this paper by performing incremental dynamic analysis (IDA) under a set of 20 ground motion records. Next, by employing Bayesian statistical inference drift demand models are developed based on pre-collapse data obtained from IDA. Then, the accuracy and reasonability of the developed models are investigated by plotting diagnosis graphs. This graphical analysis demonstrates probabilistic demand model developed in terms of PGA is more reliable. Afterward, fragility curves according to PGA based-demand model are developed.

Strut as a Permanent System using Composite Beams (층고절감형 거더를 이용한 영구 스트러트 공법)

  • Hong, Won-Kee;Park, Seon-Chee;Kim, Jin-Min;Lee, Ho-Chan
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Sheathing work used for excavation in a crowded downtown is generally a temporary strut method using H-piles and sheathing wall includes lagging, CIP, SCW or slurry wall. A temporary strut serving the support for sheathing wall acts to resist the earth pressure, but it shall be removed when installing the underground structure members. A traditional temporary strut might cause the stress imbalance of the sheathing wall when it is demolished, resulting in time extension and the risk of collapse. A traditional temporary strut method thus needs to be improved for schedule and cost reduction, risk mitigation and for preparation for potential civic complaint. A permanent strut method doesn't require installing and demolishing the temporary structure that will lead to reducing the time and cost and the structural risk during the demolition process. And given the girder, the part of the underground structure, serves the role of strut, it can secure the wider interval compared to the traditional method, which enables to secure the wider space for the convenience of excavation as well as enhance the constructability and efficient site management. The thesis was intended to study the composite girder designed to use the strut as permanent structure so as to reduce the excavation and floor height.

Strength Analysis for PAU Seat of FPSO (FPSO 선의 PAU SEAT 강도 해석)

  • HA T.M.;Kim S.S.;SONG M.K.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.90-96
    • /
    • 2005
  • This paper presents the results of the reliability analysis of PAU (Preliminary Assembly Unit) seat of the floating Production Storage and Off1-loading Unit (FPSO) The main aim of the analysis was to demonstrate that a sufficient safety of structural members is guaranteed against PAU loads, internal and external pressure, and hull girder moments. Topside loads for PAU design are based on owner's request. According to the seat type, topside loads are classified into maximum values of same seat type for design efficiency. Totally, 26 loading cases for each model are used for this analysis with the combination of the reactions of PAU loafing and the hull girder bending moments according to LR offshore (2). The analysis results are evaluated according to the acceptance criteria for yielding given in LR offshore and guidance note (3) and The panel buckling resistance is verified by LR offshore and SDA (4). For 900,000 bbls FPSO, the PAU support foundation analysis using 3-D F.E. model is carried out to verify the structural adequacy of PAU foundation and structure members in way of PAU. The modified structures in way of PAU support are safe against considered load cases and all stresses in way of PAU support are within design criteria.

  • PDF

Dynamic interaction analysis of actively controlled maglev vehicles and guideway girders considering nonlinear electromagnetic forces

  • Min, Dong-Ju;Lee, Jun-Seok;Kim, Moon-Young
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • This study intends to explore dynamic interaction behaviors between actively controlled maglev vehicle and guideway girders by considering the nonlinear forms of electromagnetic force and current exactly. For this, governing equations for the maglev vehicle with ten degrees of freedom are derived by considering the nonlinear equation of electromagnetic force, surface irregularity, and the deflection of the guideway girder. Next, equations of motion of the guideway girder, based on the mode superposition method, are obtained by applying the UTM-01 control algorithm for electromagnetic suspension to make the maglev vehicle system stable. Finally, the numerical studies under various conditions are carried out to investigate the dynamic characteristics of the maglev system based on consideration of the linear and nonlinear electromagnetic forces. From numerical simulation, it is observed that the dynamic responses between nonlinear and linear analysis make little difference in the stable region. But unstable responses in nonlinear analysis under poor conditions can sometimes be obtained because the nominal air-gap is too small to control the maglev vehicle stably. However, it is demonstrated that this unstable phenomenon can be removed by making the nominal air-gap related to electromagnetic force larger. Consequently it is judged that the nonlinear analysis method considering the nonlinear equations of electromagnetic force and current can provide more realistic solutions than the linear analysis.

A Study on the Interactive Grain Stability Calculation (대화형 Grain Stability Calculation에 관한 연구)

  • Lee, S.S.;Lee, K.O.;Kang, W.S.;Yoon, M.T.;Sung, D.K.;Lee, J.C.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.102-110
    • /
    • 1997
  • In a shipyard, computer calculation is not frequently used for the grain stability calculation because of large difference between calculation values and real values. Therefore, the necessary calculation process for grain stability is done manually. GUI(Graphical User Interface) is adopted for the convenience of users and interactive data I/O. The hold shape (girder, hold, etc.)needed for calculation are visualized using GLBAX which is a 3 dimensional graphic library. The interface with the ship basic calculation package is also implemented. The aim of this paper is to develop a reliable interactive grain stability calculation program which reduces computational time, and is to computerize the grain stability calculation procedure.

  • PDF