• Title/Summary/Keyword: T-세포

Search Result 3,165, Processing Time 0.03 seconds

Effects of Baicalin on Gene Expression Profiles during Adipogenesis of 3T3-L1 Cells (3T3-L1 세포의 지방세포형성과정에서 Baicalin에 의한 유전자 발현 프로파일 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Chung, Sang-In;Cho, Soo-Hyun;Yoon, Yoo-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.54-63
    • /
    • 2010
  • Baicalin, a flavonoid, was shown to have diverse effects such as anti-inflammatory, anti-cancer, anti-viral, anti-bacterial and others. Recently, we found that the baicalin inhibits adipogenesis through the modulations of anti-adipogenic and pro-adipogenic factors of the adipogenesis pathway. In the present study, we further characterized the molecular mechanism of the anti-adipogenic effect of baicalin using microarray technology. Microarray analyses were conducted to analyze the gene expression profiles during the differentiation time course (0 day, 2 day, 4 day and 7 day) in 3T3-L1 cells with or without baicalin treatment. We identified a total of 3972 genes of which expressions were changed more than 2 fold. These 3972 genes were further analyzed using hierarchical clustering analysis, resulting in 20 clusters. Four clusters among 20 showed clearly up-regulated expression patterns (cluster 8 and cluster 10) or clearly down-regulated expression patterns (cluster 12 and cluster 14) by baicalin treatment for over-all differentiation period. The cluster 8 and cluster 10 included many genes which enhance cell proliferation or inhibit adipogenesis. On the other hand, the cluster 12 and cluster 14 included many genes which are related with proliferation inhibition, cell cycle arrest, cell growth suppression or adipogenesis induction. In conclusion, these data provide detailed information on the molecular mechanism of baicalin-induced inhibition of adipogenesis.

TGF-β1 Expression by Proliferated Keratinocytes in the Skin of E-Irradiated Mice (E-ray를 조사한 쥐의 피부에서 증식된 keratinocyte에 의한 TGF-β1 발현)

  • Yoon, A-Ran;Kim, Do-Nyun;Seo, Min-Koo;Oh, Sang-Taek;Seo, Jung-Seon;Jun, Se-Mo;Cha, Jung-Ho;Lee, Seung-Deok;Lee, Suk-Kyeong
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.133-141
    • /
    • 2012
  • In this study, we established a radiodermatitis animal model and investigated the change in immune cell proportions in the secondary lymphoid organs. The cells responsible for the increased transforming growth factor-${\beta}1$ (TGF-${\beta}1$) and interleukin-10 (IL-10) production in the lesions following irradiation were also investigated. The radiodermatitis model was constructed by locally exposing the posterior dorsal region of hairless-1 (HR-1) mice to 10 Gy electron (E)-ray/day for six consecutive days. The change in immune cell proportions was analyzed by FACS. Immunohistochemistry was carried out to detect the expression of cytokines and cell-specific markers in the skin. The proportions of antigen-presenting cells, T cells, and B cells in the lymph nodes and spleen were affected by E-irradiation. After irradiation, TGF-${\beta}1$ and IL-17 were co-localized in the papillary region of the dermis with keratin-14 (K-14)-positive cells rather than with regulatory T cells (Treg). IL-10 was not co-stained with Treg, T helper 17 (Th17) cells, dendritic cells, or macrophages. Our data indicate that TGF-${\beta}1$ is over-expressed mainly by proliferated keratinocytes in the lesions of a radiodermatitis animal model.

Comparison of Cytotoxin and Immune Activities between Natural and Tissue Cultured Plant in Artemisia capillaris Thunb. (자연산 및 조직배양 사철쑥의 세포독성 및 면역활성 비교)

  • Kim, Jung-Hwa;Kim, Dae-Ho;You, Jin-Hyun;Kim, Cheol-Hee;Kwon, Min-Chul;Hwang, Baik;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.4
    • /
    • pp.154-160
    • /
    • 2005
  • This study was performed to compare anticancer and immune activities between natural Artemisia capillaris Thunb. extract and tissue cultured plant extract (hairy root, in vitro culture, callus). The inhibitory effect of cancer cell growth, human B cell growth and productivity of cytokines were examined. Furthermore, HPLC analysis was performed to confirm the components. The anticancer activities increased by more than 55% with the cultured callus of Artemisia capillaris T. for four cancer cell lines(Lung carcunoma, Stomach adenocarcinoma, Hepatocillular carcinoma, Breast adenocarcinoma), showing higher effect than natural Artemisia capillaris T. The extracts from hairy root and in vitro culture of Artemisia capillaris T. significantly increased the immune B cell growth. The immune B cell growth effect of natural Artemisia capillaris T. was higher than that of the tissue culture plants such as hairy root, in vitro culture and callus. Both natural and tissue cultured plants showed similar effects on cytokine secretion. The similar peak size was observed between natural Artemisia capillaris T. and cultured callus in HPLC analysis. As a results, the biological activities were not observed the difference between natural Artemisia capillaris T. and cultured callus. Thus, the cultured callus will be altered natural Artemisia capillaris T. in the environmental side and the resources preservative side

Effects of Ginsenosides on Glucose Uptake and Insulin Secretion

  • Park, Min-Woo;Shin, Eun-Jung;Ko, Sung-Kwon;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2007.05a
    • /
    • pp.23-24
    • /
    • 2007
  • Purpose: 인삼이 항당뇨 활성을 가진다는 연구가 많은 연구자들에 의해 진행되었고, 이는 인삼의 구성 성분 중 ginsenoside에 기인한다는 보고가 있다. 본 연구는 ginsenoside의 항당뇨 작용기전을 in vitro에서 알아보고자 3T3-L1 지방세포에서 glucose uptake와 췌장 베타세포인 HIT-T15 세포에서 insulin 분비 효과를 확인하였다. 이를 위하여 인삼을 식초로 처리한 긴삼의 70% MeOH 분획으로부터 protopanaxadiol 계인 ginsenoside $Rb_2$, $Rg_3$ 그리고 protopanaxtriol 계인 $Rg_2$를 분리하여 본 실험에 사용하였다. Method: Ginsenoside $Rb_2$, $Rg_2$, $Rg_3$가 지방 세포에서 glucose uptake에 미치는 효과를 확인하기 위하여 3T3-L1 세포를 DMEM (Dulbecco's Modified Eagle's Medium) 배지에서 분화 유도시켰으며 3T3-L1 preadipocyte가 80% 정도 자라면 분화 유도 배지 (5% fetal bovine serum (FBS), 0.5 mM isobutylmethylxanthine (IBMX), 1 mM dexamethasone 그리고 $10{\mu}g/ml$ insulin가 포함된 DMEM)로 4일, $10{\mu}g/ml$ insulin가 포함된 DMEM으로 2일, FBS만 포함된 DMEM으로 2일 배양하여 총 8일 동안 분화를 유도하였다. 분화 유도된 3T3-L1 adipocytes 에 각각 $Rb_2$, $Rg_2$, $Rg_3$$20{\mu}M$로 처리하여 16시간 배양하여 low glucose DMEM에서 3시간 배양한 후에 $37^{\circ}C$에서 insulin 10 ng/ml 과 각각 $Rb_2$, $Rg_2$, $Rg_3$가 포함된 Krebs Ringer Hepes buffer(KRP buffer)에서 20분간 배양하였다. 2-deoxy-D-[$^3H$]-glucose를 넣고 10분 후에 차가운 PBS로 반응을 종결시켜 lysis buffer로 cell을 모은 후 scintillation counter를 이용하여 glucose를 측정하였다. Insulin 분비 효과는 HIT-T15 세포와 일차 배양한 흰쥐 소도세포(islets)를 사용하여 확인하였다. HIT-T15 세포는 24 well plate에 well 당 $2{\times}10^5$ 개씩 분주하여 24시간 동안 배양한 후 시료를 처리하였으며 소도 세포는 Sprague-Dawley rat의 췌장에 collagenase가 포함된 Hanks' Balanced Salt Solution(HBSS)을 주입하여 분리하고 islets을 얻었다. 분리한 소도세포를 $1{\sim}2$일 동안 배양하여 $Rb_2$, $Rg_2$, $Rg_3$가 각각 $20{\mu}M$의 농도로 첨가된 insulin 측정용 buffer인 Krebs-Ringer buffer (KRB+0.3% BSA, KRBB)에 $37^{\circ}C$에서 1시간 incubation 시킨 후 배양액으로 분비된 인슐린의 양을 측정하였다. 한편 ginsenoside의 인슐린 분비 촉진 기전을 알아보기 위한 실험에서는 ATP-sensitive $K^+$ channel opener인 diazoxide (0.5 mM)가 ginsenoside에 의해 촉진된 인슐린 분비를 억제하는지 살펴보았다. Result: glucose uptake assay 에서는 $Rg_2$가 가장 크게 glucose uptake를 증가시켰고 $Rb_2$, $Rg_3$는 그 활성이 크지 않았다. 한편 Insulin 분비 효과는 diol계인 $Rg_3$에서 용량 의존적으로 인슐린의 분비를 촉진시켰으며 $20{\mu}M$ 농도에서 대조군과 비교해 1.5배 이상의 분비 촉진 효과를 보였고 triol계인 $Rg_2$ 에서는 이러한 효과가 나타나지 않았다. $Rg_3$의 인슐린 분비 촉진 기전을 0.5 mM 의 diazoxide를 이용하여 확인한 결과 $Rg_3$에 의해 촉진된 인슐린 분비를 감소시켰다. 이로 미루어보아 $Rg_3$의 인슐린 분비 촉진 기전은 ATP-sensitive $K^+$ 채널의 봉쇄에 의한 것임을 확인할 수 있었다.

  • PDF

Anti-Obesity Effects of Fermented Soybean Oils in 3T3-L1 Pre-Adipocytes and High Fat Diet-Fed C57BL/6J Mice (발효콩 유지의 3T3-L1 지방전구세포와 고지방식이를 급여한 C57BL/6J 생쥐에 대한 항비만 효과)

  • Kim, Seon-Woong;Kim, Nam-Seok;Oh, Mi-Jin;Kim, Ha-Rim;Kim, Min-Sun;Lee, Da-Young;Yoon, Suk-Hoo;Jung, Mun-Yhung;Kim, Hun-Jung;Lee, Chang-Hyun;Oh, Chan-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.279-288
    • /
    • 2017
  • This study investigated the manufacturing of fermented soybean oil using a fermenting strain commonly processed for soybeans [Bacillus amyloliquefaciens (BA), Bacillus subtilis (BS), Lactobacillus acidophilus (LBA), and B. subtilis+L. acidophilus (BLO)] and evaluated its anti-obesity activities. Cytotoxicity of four kinds of fermented soybean oils was not observed in 3T3-L1 preadipocytes at 10 and $50{\mu}g/mL$. Triglyceride content was reduced by 20.6% in the BLO group at a treatment concentration of $50{\mu}g/mL$. The simultaneous treatment of fermented soybean oil and differentiation induction medium decreased $PPAR{\gamma}$ and $C/EBP{\alpha}$ gene expression at a concentration of $50{\mu}g/mL$ and blocked adipocyte differentiation by increasing adiponectin gene expression. The inhibitory effect of adipocyte differentiation was greatest in the BLO group. C57BL/6J mice were examined for 4 weeks after being separated into seven groups [normal diet group (N), high fat diet group (C), group fed high fat diet combined with regular soybean oil (SO), group fed non-fermented soybean oil (NF), and groups fed high fat diet combined with 5% fermented soybean oil (BA, BS, LBA, and BLO)] to identify the effects of soybean oil on body weight, serum lipid, adiponectin, insulin, and leptin levels in mice with high fat diet-induced obesity. The body weight and serum lipid level of the C group increased drastically compared to those of the N group. In contrast, the group fed a diet combined with fermented soybean oil showed decreases in weight, serum total cholesterol, LDL-cholesterol, and triglyceride levels compared to those of the C group. Moreover, soybean oil was found to be effective in the BLO group. In conclusion, fermented soybean oil has positive effects in prohibiting adipocyte differentiation increased by high fat diet and improving serum lipid composition. Therefore, fermented soybean oil can be used as a functional food material with anti-obesity activity.

The Anti-adipogenic and Lipolytic Effect of Jinkyool (Citrus sunki Hort. ex Tanaka) Leaf Extract in 3T3-L1 Cells (3T3-L1 지방세포에서 진귤 잎 유래 polymethoxyflavones 다량 함유 분획물(PRF)의 항지방생성 및 지방분해 효과)

  • Jin, Yeong Jun;Jang, Mi Gyeong;Kim, Jae-Won;Kang, Minyeong;Ko, Hee Chul;Kim, Se Jae
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.542-549
    • /
    • 2022
  • Polymethoxyflavones (PMFs) are flavonoids mainly found in citrus fruits and have been reported to exhibit a wide range of bioactivities, including anti-obesity, anti-cancer, and anti-inflammatory actions. To utilize PMFs as functional materials, it is necessary to develop a simple method of obtaining PMFs from citrus tissues containing a large amount of PMFs. It has been reported that Jinkyool (C. sunki Hort ex. Tanaka) peel contained a large amount of PMFs, but there are no studies on PMFs isolated from its leaves. In this study, we established a simple procedure for obtaining the PMF-rich fraction (PRF) from the leaves of Jinkyool and investigated the effects of PRF on lipid metabolism in 3T3-L1 cells. PRF inhibited lipogenesis during the differentiation of 3T3-L1 preadipocytes. It decreased the expression of peroxisome proliferator-activated receptor gamma (PPAR𝛾) and CCAAT/enhancer binding protein alpha (CEBP𝛼), FAS, and adipocyte fatty-acid-binding protein 2 (aP2). In mature 3T3-L1 adipocytes, PRF increases the phosphorylation of protein kinase A (PKA)/hormone-sensitive lipase (HSL), which are key factors involved in lipolysis. Moreover, it increases the phosphorylation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) involved in fatty acid oxidation. These results suggest that PRF from Jinkyool leaves can be used as an anti-obesity agent with the action of inhibiting lipogenesis and promoting lipolysis and fatty acid oxidation in 3T3-L1 adipocytes.

Novel Gap Junction Molecules, Connexin 37, Enhances the Bystander Effect in HSVtk/GCV Gene Therapy (Herpes Simplex Virus thymidine Kinase/Ganciclovir 유전자 치료에서 새로운 간격결합분자 Connexin 37에 의한 방관자 효과의 증가)

  • Kim, Sun Young;Yi, Ho Keun;Lee, Jung Chang;Hwang, Dong Jin;Hwang, Pyoung Han;Lee, Dae Yeol;Cho, Soo Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.6
    • /
    • pp.541-547
    • /
    • 2003
  • Purpose : Gap junction intercellular communication(GJIC) is an important mechanism of the bystander effect in herpes simplex thymidine kinase/ganciclovir(HSVtk/GCV) gene therapy Therefore, we attempted to enhance the bystander effect in vitro by exogenous overexpressing connexin 37(Cx37) in cells to increase GJIC. Methods : NIH3T3 cells were transfected with the Cx37 and HSVtk gene or the HSVtk gene alone by the calcium phosphate method, and we detected their expression from these cells by RT-PCR. GCV-mediated cytotoxicity and the bystander effect of each transfectant was then assessed and compared. Results : Cells transfected with HSVtk became sensitive to low concentration of GCV. We found significantly increased cytotoxicity in HSVtk/GCV gene therapy after introduction of the HSVtk and Cx37 genes together compared with the cytotoxicity seen after introduction of the HSVtk gene in vitro. Co-expression of the HSVtk and Cx37 genes potentiates HSVtk/GCV gene therapy through the bystander effect. Conclusion : These results indicated that the increase of GJIC using Cx37 have potentiated the bystander effect of HSVtk/GCV therapy, and may be a new approach to improve response in suicidal cancer gene therapy.

DDT Reduced Testosterone and Aromatase Activity Via ER Receptor in Leydig Cell (DDT의 Aromatase 증가에 의한 Testosterone 감소효과)

  • Lee, Kyung-Jin;Wui, Seong-Uk;Jin Heo;Kim, Sun-Hee;Jeong, Ji-Yeon;Lee, Jong-Bin
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • Dichlorodiphenyltrichloroethane (DDT), is a widespread environmental pollutant. In this study, we investigated the effect of DDT on testosterone production through aromatase and investigated its molecular mechanism in testicular leydig cell, R2C. We investigated that the effects of DDT on testosterone production and its effects on aromatase activity in R2C cell by radio immunoassay (RIA). As the results, the potent leyding cell activator LH increased testosterone production compared to the control. DDT exposure significantly decreased testosterone production in R2C cell and DDT alone affected T reduction in a dose-dependent manner in R2C cell slightly. In addition, DDT was found to increase aromatase activity in R2C cell in a dose dependent manner. In order to assess whether the suppressive effects of DDT on LH-inducible testosterone production might be influenced by the ER, ICI 182.780, a pure antiestrogen, was used, and it was found that these inhibitory effects of DDT were antagonized by ICI 182.780, implying that the ER mediates the suppressive effects of DDT. Furthermore, the inducible effects of DDT on aromatase might be influenced by the ER, ICI 182.780 was used, and it was found that these enhancing effects of DDT were antagonized by ICI 182.780, implying that the ER mediates the inducible effects of DDT. Our results indicated that DDT inhibition of LH-inducible testosterone production in R2C is mediated through aromatase. However, the precise mechanisms by which DDT enhance in leyding cell remains unknown. The current study suggests the possibility that DDT might act as a modulator aromatase gene transcription.

Induction of Apoptotic Cell Death and Depression of Bcl-2 Protein Levels by Trans-10,cis-12 Conjugated Linoleic Acid in Human Prostate Cancer (인간 전립선 암세포인 TSU-Pr1에서 trans-10,cis-12 Conjugated Linoleic Acid에 의한 Apoptosis 유발과 Bcl-2 단백질의 발현억제)

  • 오윤신;김은지;이상곤;정차권;강일준;신현경;윤정한
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1126-1133
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a collective term for a class of positional and geometric conjugated dienoic isomers of linoleic acid (LA) and has anti-cancer activity in experimental animals. We have previously observed that an isomeric mixture of CLA and trans-10,cis-12 (t10c12) inhibited cell growth in a dose-dependent manner whereas LA and cis-9,trans-11 (c9t11) had no effect. The present study examined whether the CLA mixture and t10c12 induce apoptotic cell death. TSU-Prl cells were incubated for three days in serum-free medium in the absence or presence of individual fatty acids, and the DNA fragmentation assay was performed. Cells treated with the CLA mixture or t10c12 produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. By contrast, LA and c9t11 had no effect. Western immunoblot analysis of total lysates revealed that t10c12 reduced anti-apoptotic, 26 kDa, Bcl-2 protein levels by 49$\pm$8% compared with controls, whereas this CLA isomer did not alter pro-apoptotic,21 kDa, Bax protein levels. These results suggest that growth inhibitory effect of the t10c12 CLA isomer may, at least in part, be attributed to Increased apoptotic death in TSU-Prl cells.

Effects of Zizyphi Spinosae Extract on Cisplatin and t-Butylhydroperoxide Induced Acute Renal Failure in Rabbits (토끼에서 cisplatin에 의해 유도된 급성 신부전시 산조인 추출물의 효과)

  • Kim, Jae Young;Kim, Chung Hui
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.777-783
    • /
    • 2014
  • Cathepsin D (CtsD), an aspartyl peptidase, is involved in apoptosis, resulting in the release of cytochrome C from mitochondria in cells. Here, we investigated microRNA regulation of CtsD expression in 3T3-L1 cells. First, we observed the expression of CtsD in cells in response to doxorubicin (Dox). As expected, the level of CtsD mRNA increased in 3T3-L1 cells exposed to Dox in a dose-dependent manner. The cellular viability of ectopically expressed CtsD cells was decreased. Next, we used the miRanda program to search for particular microRNA targeting CtsD. MiR-145 was selected as a putative controller of CtsD because it had a high mirSVR score. In a reporter assay, the luciferase activity of cells containing the CtsD 3'-UTR region decreased in cells transfected with a miR-145 mimic compared to that of a control. The level of CtsD expression was down-regulated in preadipocytes ectopically expressing miR-145 and up-regulated by an miR-145 inhibitor. Cells also suppressed miR-145 expression when exposed to Dox. The miR-145 inhibitor reduced the cellular viability of 3T3-L1 cells. Taken together, these data suggest that miR-145 regulates CtsD-mediated cell death in adipocytes. These findings may have valuable implications concerning the molecular mechanism of CtsD-mediated cell death in obesity, suggesting that CtsD could be a useful therapeutic tool for the prevention and treatment of obesity by regulating fat cell numbers.