• Title/Summary/Keyword: T cell activation

Search Result 721, Processing Time 0.034 seconds

Protective Antitumor Activity through Dendritic Cell Immunization is Mediated by NK Cell as Well as CTL Activation

  • Kim, Kwang-Dong;Kim, Jin-Koo;Kim, Se-Jin;Choe, In-Seong;Chung, Tae-Hwa;Choe, Yong-Kyung;Lim, Jong-Seok
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.340-347
    • /
    • 1999
  • Dendritic cells (DCs) are potent professional antigen-presenting cells (APC) capable of inducing the primary T cell response to antigen. Although tumor cells express target antigens, they are incapable of stimulating a tumor-specific immune response due to a defect in the costimulatory signal that is required for optimal activation of T cells. In this work, we describe a new approach using tumor-DC coculture to improve the antigen presenting capacity of tumor cells which does not require a source of tumor-associated antigen. Immunization of a weakly immunogenic and progressive tumor cocultured with none marrow-derived DCs generated an effective tumor vaccine. Immunization with the cocutured DCs was able to induce complete protectiv immunity against tumor challenges and was effective for the induction of tumor-specific CTL (cytotoxic T lymphocyte) activity. Furthermore, high NK cell activity was observed in mice in which tumors were rejected. In addition, immunization with tumor-pulsed DC s induced delayed tumor growth, but not tumor eradication in tumor-bearing mice. Our results demonstrate that coculture of DCs with tumors generated antitumor immunity due to the NK cell activation as well as tumor-specific T cell. This approach would be used for designing tumor vaccines using DCs when the information about tumor antigens is limited.

  • PDF

Rapamycin-resistant and torin-sensitive mTOR signaling promotes the survival and proliferation of leukemic cells

  • Park, Seohyun;Sim, Hyunsub;Lee, Keunwook
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.63-68
    • /
    • 2016
  • The serine/threonine kinase mTOR is essential for the phosphoinositide 3-kinases (PI3K) signaling pathway, and regulates the development and function of immune cells. Aberrant activation of mTOR signaling pathway is associated with many cancers including leukemia. Here, we report the contributions of mTOR signaling to growth of human leukemic cell lines and mouse T-cell acute leukemia (T-ALL) cells. Torin, an ATP-competitive mTOR inhibitor, was found to have both cytotoxic and cytostatic effects on U-937, THP-1, and RPMI-8226 cells, but not on Jurkat or K-562 cells. All cells were relatively resistant to rapamycin even with suppressed activity of mTOR complex 1. Growth of T-ALL cells induced by Notch1 was profoundly affected by torin partially due to increased expression of Bcl2l11 and Bbc3. Of note, activation of Akt or knockdown of FoxO1 mitigated the effect of mTOR inhibition on T-ALL cells. Our data provide insight on the effect of mTOR inhibitors on the survival and proliferation of leukemic cells, thus further improving our understanding on cell-context-dependent impacts of mTOR signaling. [BMB Reports 2016; 49(1): 63-68]

Pharmacologic Inhibition of Autophagy Sensitizes Human Acute Leukemia Jurkat T Cells to Acacetin-Induced Apoptosis

  • Lee, Ji Young;Jun, Do Youn;Kim, Ki Yun;Ha, Eun Ji;Woo, Mi Hee;Ko, Jee Youn;Yun, Young Ho;Oh, In-Seok;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.197-205
    • /
    • 2017
  • Exposure of Jurkat T cell clone (J/Neo cells) to acacetin (5,7-dihydroxy-4'-methoxyflavone), which is present in barnyard millet (Echinochloa esculenta (A. Braun)) grains, caused cytotoxicity, enhancement of apoptotic $sub-G_1$ rate, Bak activation, loss of mitochondrial membrane potential (${\Delta}{\Psi}m$), activation of caspase-9 and caspase-3, degradation of poly(ADP-ribose) polymerase, and FITC-Annexin V-stainable phosphatidylserine exposure on the external surface of the cytoplasmic membrane without accompanying necrosis. These apoptotic responses were abrogated in Jurkat T cell clone (J/Bcl-xL) overexpressing Bcl-xL. Under the same conditions, cellular autophagic responses, including suppression of the Akt-mTOR pathway and p62/SQSTM1 down-regulation, were commonly detected in J/Neo and J/Bcl-xL cells; however, formation of acridine orange-stainable acidic vascular organelles, LC3-I/II conversion, and Beclin-1 phosphorylation (Ser-15) were detected only in J/Neo cells. Correspondingly, concomitant treatment with the autophagy inhibitor (3-methyladenine or LY294002) appeared to enhance acacetin-induced apoptotic responses, such as Bak activation, ${\Delta}{\Psi}m$ loss, activation of caspase-9 and caspase-3, and apoptotic $sub-G_1$ accumulation. This indicated that acacetin could induce apoptosis and cytoprotective autophagy in Jurkat T cells simultaneously. Together, these results demonstrate that acacetin induces not only apoptotic cell death via activation of Bak, loss of ${\Delta}{\Psi}m$, and activation of the mitochondrial caspase cascade, but also cytoprotective autophagy resulting from suppression of the Akt-mTOR pathway. Furthermore, pharmacologic inhibition of the autophagy pathway augments the activation of Bak and resultant mitochondrial damage-mediated apoptosis in Jurkat T cells.

Knockdown of Bcl-3 Inhibits Cell Growth and Induces DNA Damage in HTLV-1-infected Cells)

  • Gao, Cai;Wang, Xia;Chen, Lin;Wang, Jin-Heng;Gao, Zhi-Tao;Wang, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.405-408
    • /
    • 2013
  • Oncoprotein Bcl-3 is perceived as an unusual member of $I{\kappa}B$ family since it can both stimulate and suppress NF-${\kappa}B$ activation. Aberrant Bcl-3 results in increased cell proliferation and survival, suggesting a contribution to malignant potential and elevated levels of Bcl-3 have been observed in many HTLV-1-infected T cell lines and ATL cells. To investigate the specific roles of Bcl-3 in HTLV-1-infected cells, we knocked down Bcl-3 expression using shRNA and then examined the consequences with regard to DNA damage and cell proliferation, as well as NF-${\kappa}B$ activation. The HTLV-1 encoded protein Tax promotes Bcl-3 expression and nuclear translocation. In HTLV-1-infected cells, Bcl-3 knockdown obviously induced DNA damage. Cell growth and NF-${\kappa}B$ activation were reduced in HTLV-1-infected or Tax positive cells when Bcl-3 expression was decreased. Together, our results revealed positive roles of Bcl-3 in DNA stabilization, growth and NF-${\kappa}B$ activation in HTLV-1-infected cells.

T Cell Immune Responses against SARS-CoV-2 in the With Corona Era

  • Ji-Eun Oh
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.211-222
    • /
    • 2022
  • After more than two years of efforts to end the corona pandemic, a gradual recovery is starting in countries with high vaccination rates. Easing public health policies for a full-fledged post-corona era, such as lifting the mandatory use of outdoor mask and quarantine measures in entry have been considered in Korea. However, the continuous emergence of new variants of SARS-CoV-2 and limitations in vaccine efficacy still remain challenging. Fortunately, T cells and memory T cells, which are key components of adaptive immunity appear to contribute substantially in COVID-19 control. SARS-CoV-2 specific CD4+/CD8+ T cells are induced by natural infection or vaccination, and rapid induction and activation of T cells is mainly associated with viral clearance and attenuated clinical severity. In addition, T cell responses induced by recognition of a wide range of epitopes were minimally affected and conserved against the highly infectious subsets of omicron variants. Polyfunctional SARS-CoV-2 specific T cell memory including stem cell-like memory T cells were also developed in COVID-19 convalescent patients, suggesting long lasting protective T cell immunity. Thus, a robust T-cell immune response appears to serve as a reliable and long-term component of host protection in the context of reduced efficacy of humoral immunity and persistent mutations and/or immune escape.

Bach2 represses the AP-1-driven induction of interleukin-2 gene transcription in CD4+ T cells

  • Jang, Eunkyeong;Lee, Hye Rim;Lee, Geon Hee;Oh, Ah-Reum;Cha, Ji-Young;Igarashi, Kazuhiko;Youn, Jeehee
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.472-477
    • /
    • 2017
  • The transcription repressor Bach2 has been proposed as a regulator of T cell quiescence, but the underlying mechanism is not fully understood. Given the importance of interleukin-2 in T cell activation, we investigated whether Bach2 is a component of the network of factors that regulates interleukin-2 expression. In primary and transformed $CD4^+$ T cells, Bach2 overexpression counteracted T cell receptor/CD28- or PMA/ionomycin-driven induction of interleukin-2 expression, and silencing of Bach2 had the opposite effect. Luciferase and chromatin immunoprecipitation assays revealed that Bach2 binds to multiple Maf-recognition element-like sites on the interleukin-2 proximal promoter in a manner competitive with AP-1, and thereby represses AP-1-driven induction of interleukin-2 transcription. Thus, this study demonstrates that Bach2 is a direct repressor of the interleukin-2 gene in $CD4^+$ T cells during the immediate early phase of AP-driven activation, thereby playing an important role in the maintenance of immune quiescence in the steady state.

Tumor Cell Clone Expressing the Membrane-bound Form of IL-12p35 Subunit Stimulates Antitumor Immune Responses Dominated by $CD8^+$ T Cells

  • Lim, Hoyong;Do, Seon Ah;Park, Sang Min;Kim, Young Sang
    • IMMUNE NETWORK
    • /
    • v.13 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • IL-12 is a secretory heterodimeric cytokine composed of p35 and p40 subunits. IL-12 p35 and p40 subunits are sometimes produced as monomers or homodimers. IL-12 is also produced as a membrane-bound form in some cases. In this study, we hypothesized that the membrane-bound form of IL-12 subunits may function as a costimulatory signal for selective activation of TAA-specific CTL through direct priming without involving antigen presenting cells and helper T cells. MethA fibrosarcoma cells were transfected with expression vectors of membrane-bound form of IL-12p35 (mbIL-12p35) or IL-12p40 subunit (mbIL-12p40) and were selected under G418-containing medium. The tumor cell clones were analyzed for the expression of mbIL-12p35 or p40 subunit and for their stimulatory effects on macrophages. The responsible T-cell subpopulation for antitumor activity of mbIL-12p35 expressing tumor clone was also analyzed in T cell subset-depleted mice. Expression of transfected membranebound form of IL-12 subunits was stable during more than 3 months of in vitro culture, and the chimeric molecules were not released into culture supernatants. Neither the mbIL-12p35-expressing tumor clones nor mbIL-12p40-expressing tumor clones activated macrophages to secrete TNF-${\alpha}$. Growth of mbIL-12p35-expressing tumor clones was more accelerated in the $CD8^+$ T cell-depleted mice than in $CD4^+$ T cell-depleted or normal mice. These results suggest that $CD8^+$ T cells could be responsible for the rejection of mbIL-12p35-expressing tumor clone, which may bypass activation of antigen presenting cells and $CD4^+$ helper T cells.

Activation-induced Cytidine Deaminase in B Cell Immunity and Cancers

  • Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.230-239
    • /
    • 2012
  • Activation-induced cytidine deaminase (AID) is an enzyme that is predominantly expressed in germinal center B cells and plays a pivotal role in immunoglobulin class switch recombination and somatic hypermutation for antibody (Ab) maturation. These two genetic processes endow Abs with protective functions against a multitude of antigens (pathogens) during humoral immune responses. In B cells, AID expression is regulated at the level of either transcriptional activation on AID gene loci or post-transcriptional suppression of AID mRNA. Furthermore, AID stabilization and targeting are determined by post-translational modifications and interactions with other cellular/nuclear factors. On the other hand, aberrant expression of AID causes B cell leukemias and lymphomas, including Burkitt's lymphoma caused by c-myc/IgH translocation. AID is also ectopically expressed in T cells and non-immune cells, and triggers point mutations in relevant DNA loci, resulting in tumorigenesis. Here, I review the recent literatures on the function of AID, regulation of AID expression, stability and targeting in B cells, and AID-related tumor formation.

MCP-1 Derived from Stromal Keratocyte Induces Corneal Infiltration of CD4+ T Cells in Herpetic Stromal Keratitis

  • Lee, Sun Kyoung;Choi, Beom Kyu;Kang, Woo Jin;Kim, Young Ho;Park, Hye Young;Kim, Kwang Hui;Kwon, Byoung S.
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Herpetic stromal keratitis (HSK) is an inflammatory disorder induced by HSV-1 infection and characterized by T cell-dependent destruction of corneal tissues. It is not known what triggers $CD4^+$ T cell migration into the stroma of HSV-1-infected corneas. The keratocyte is a fibroblast-like cell that can function as an antigen-presenting cell in the mouse cornea by expressing MHC class II and costimulatory molecules after HSV-1 infection. We hypothesized that chemokines produced by stromal keratocytes are involved in $CD4^+$ T cell infiltration into the cornea. We found that keratocytes produce several cytokines and chemokines, including MCP-1, RANTES, and T cell activation (TCA)-3. HSV-1 infection increased the production of MCP-1 and RANTES by keratocytes, and these acted as chemoattractants for HSV-1-primed $CD4^+$ T cells expressing CCR2 and CCR5. ExpreHerpetic stromal keratitis (HSK) is an inflammatory disorder induced by HSV-1 infection and characterized by T cell-dependent destruction of corneal tissues. It is not known what triggers $CD4^+$ T cell migration into the stroma of HSV-1-infected corneas. The keratocyte is a fibroblast-like cell that can function as an antigen-presenting cell in the mouse cornea by expressing MHC class II and costimulatory molecules after HSV-1 infection. We hypothesized that chemokines produced by stromal keratocytes are involved in $CD4^+$ T cell infiltration into the cornea. We found that keratocytes produce several cytokines and chemokines, including MCP-1, RANTES, and T cell activation (TCA)-3. HSV-1 infection increased the production of MCP-1 and RANTES by keratocytes, and these acted as chemoattractants for HSV-1-primed $CD4^+$ T cells expressing CCR2 and CCR5. Expression of MCP-1 in the corneal stroma was confirmed in vivo. Finally, when HSV-1-primed $CD4^+$ T cells were adoptively transferred into wild type and MCP-1-deficient mice that had been sublethally irradiated to minimize chemokine production from immune cells, infiltration of $CD4^+$ T cells was markedly reduced in the MCP-1-deficient mice, suggesting that it is the MCP-1 from HSV-1-infected keratocytes that attracts $CD4^+$ T cells into the cornea.

Neuraminidase Treatment Enhances Allogeneic Stimulation of Unprimed $CD8^+$ T Cells

  • Kim, Kil-Hyoun
    • BMB Reports
    • /
    • v.30 no.6
    • /
    • pp.385-389
    • /
    • 1997
  • Many cell types are known to stimulate $CD8^+$ T cells in allogeneic recognition such as mixed lymphocyte reaction (MLR). Whereas dendritic cells are most potent among them. T cells are usually considered very poor in stimulating $CD8^+$ T cells although there are some tumor cells that are weakly stimulatory. T cells, as a stimulator, cultured in the presence of concanavalin A that were otherwise nonstimulatory to $CD8^+$ T cells appeared to stimulate $CD8^+$ T cells strongly when they were pretreated with neuraminidase. The enhancement of MLR by neuraminidase could be achieved by treating either the stimulators or responders with neuraminidase. Removal of negatively-charged sialic acid moieties from the cell surface, which reduced electrostatic repulsion between responders and stimulators to give better cell-cell contact might be responsible for the enhanced MLR. In addition, neuraminidase treatment also appeared to deliver activation signal to responding T cells since it could activate $CD8^+$ T cells in synergy with phorbol myristate acetate. The maximal responses were observed when both responders and stimulators were treated with neuraminidase.

  • PDF