Browse > Article
http://dx.doi.org/10.4110/in.2013.13.2.63

Tumor Cell Clone Expressing the Membrane-bound Form of IL-12p35 Subunit Stimulates Antitumor Immune Responses Dominated by $CD8^+$ T Cells  

Lim, Hoyong (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
Do, Seon Ah (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
Park, Sang Min (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
Kim, Young Sang (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
Publication Information
IMMUNE NETWORK / v.13, no.2, 2013 , pp. 63-69 More about this Journal
Abstract
IL-12 is a secretory heterodimeric cytokine composed of p35 and p40 subunits. IL-12 p35 and p40 subunits are sometimes produced as monomers or homodimers. IL-12 is also produced as a membrane-bound form in some cases. In this study, we hypothesized that the membrane-bound form of IL-12 subunits may function as a costimulatory signal for selective activation of TAA-specific CTL through direct priming without involving antigen presenting cells and helper T cells. MethA fibrosarcoma cells were transfected with expression vectors of membrane-bound form of IL-12p35 (mbIL-12p35) or IL-12p40 subunit (mbIL-12p40) and were selected under G418-containing medium. The tumor cell clones were analyzed for the expression of mbIL-12p35 or p40 subunit and for their stimulatory effects on macrophages. The responsible T-cell subpopulation for antitumor activity of mbIL-12p35 expressing tumor clone was also analyzed in T cell subset-depleted mice. Expression of transfected membranebound form of IL-12 subunits was stable during more than 3 months of in vitro culture, and the chimeric molecules were not released into culture supernatants. Neither the mbIL-12p35-expressing tumor clones nor mbIL-12p40-expressing tumor clones activated macrophages to secrete TNF-${\alpha}$. Growth of mbIL-12p35-expressing tumor clones was more accelerated in the $CD8^+$ T cell-depleted mice than in $CD4^+$ T cell-depleted or normal mice. These results suggest that $CD8^+$ T cells could be responsible for the rejection of mbIL-12p35-expressing tumor clone, which may bypass activation of antigen presenting cells and $CD4^+$ helper T cells.
Keywords
Membrane-bound form; Interleukin-12; p35 subunit; p40 subunit; MethA fibrosarcoma;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kobayashi, M., L. Fitz, M. Ryan, R. M. Hewick, S. C. Clark, S. Chan, R. Loudon, F. Sherman, B. Perussia, and G. Trinchieri. 1989. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170: 827-845.   DOI
2 Gately, M. K., D. E. Wilson, and H. L. Wong. 1986. Synergy between recombinant interleukin 2 (rIL 2) and IL 2-depleted lymphokine-containing supernatants in facilitating allogeneic human cytolytic T lymphocyte responses in vitro. J. Immunol. 136: 1274-1282.
3 Stern, A. S., F. J. Podlaski, J. D. Hulmes, Y. C. Pan, P. M. Quinn, A. G. Wolitzky, P. C. Familletti, D. L. Stremlo, T. Truitt, and R. Chizzonite, et al. 1990. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc. Natl. Acad. Sci. U. S. A. 87: 6808-6812.   DOI
4 Hsieh, C. S., S. E. Macatonia, C. S. Tripp, S. F. Wolf, A. O'Garra, and K. M. Murphy. 199. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260: 547-549.
5 Manetti, R., P. Parronchi, M. G. Giudizi, M. P. Piccinni, E. Maggi, G. Trinchieri, and S. Romagnani. 1993. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. 177: 1199-1204.   DOI
6 Gately, M. K., B. B. Desai, A. G. Wolitzky, P. M. Quinn, C. M. Dwyer, F. J. Podlaski, P. C. Familletti, F. Sinigaglia, R. Chizonnite, and U. Gubler, et al. 1991. Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J. Immunol. 147: 874-882.
7 Trinchieri, G. 1998. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol. 70: 83-243.   DOI
8 Weiss, J. M., J. J. Subleski, J. M. Wigginton, and R. H. Wiltrout. 2007. Immunotherapy of cancer by IL-12-based cytokine combinations. Expert. Opin. Biol. Ther. 7: 1705-1721.   DOI
9 D'Andrea, A., M. Rengaraju, N. M. Valiante, J. Chehimi, M. Kubin, M. Aste, S. H. Chan, M. Kobayashi, D. Young, and E. Nickbarg, et al. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176: 1387-1398.
10 Gillessen, S., D. Carvajal, P. Ling, F. J. Podlaski, D. L. Stremlo, P. C. Familletti, U. Gubler, D. H. Presky, A. S. Stern, and M. K. Gately. 1995. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur. J. Immunol. 25: 200-206.   DOI
11 Heinzel, F. P., A. M. Hujer, F. N. Ahmed, and R. M. Rerko. 1997. In vivo production and function of IL-12 p40 homodimers. J. Immunol. 158: 4381-4388.
12 Ling, P., M. K. Gately, U. Gubler, A. S. Stern, P. Lin, K. Hollfelder, C. Su, Y. C. Pan, and J. Hakimi. 1995. Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity. J. Immunol. 154: 116-127.
13 Jana, M., S. Dasgupta, R. N. Saha, X. Liu, and K. Pahan. 2003. Induction of tumor necrosis factor-alpha (TNF-alpha) by interleukin-12 p40 monomer and homodimer in microglia and macrophages. J. Neurochem. 86: 519-528.
14 Fan, X., V. Sibalic, E. Niederer, and R. P. Wüthrich. 1996. The proinflammatory cytokine interleukin-12 occurs as a cell membrane-bound form on macrophages. Biochem. Biophys. Res. Commun. 225: 1063-1067.   DOI
15 Jana, M. and K. Pahan. 2009. IL-12 p40 homodimer, but not IL-12 p70, induces the expression of IL-16 in microglia and macrophages. Mol. Immunol. 46: 773-783.   DOI
16 Cooper, A. M. and S. A. Khader. 2007. IL-12p40: an inherently agonistic cytokine. Trends. Immunol. 28: 33-38.   DOI
17 Khader, S. A., S. Partida-Sanchez, G. Bell, D. M. Jelley-Gibbs, S. Swain, J. E. Pearl, N. Ghilardi, F. J. Desauvage, F. E. Lund, and A. M. Cooper. 2006. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J. Exp. Med. 203: 1805-1815.   DOI
18 Wolf, S. F., P. A. Temple, M. Kobayashi, D. Young, M. Dicig, L. Lowe, R. Dzialo, L. Fitz, C. Ferenz, R. M. Hewick, et al. 1991. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J. Immunol. 146: 3074-3081.
19 Brunda, M. J., L. Luistro, R. R. Warrier, R. B. Wright, B. R. Hubbard, M. Murphy, S. F. Wolf, and M. K. Gately. 1993. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178: 1223-1230.   DOI
20 Nastala, C. L., H. D. Edington, T. G. McKinney, H. Tahara, M. A. Nalesnik, M. J. Brunda, M. K. Gately, S. F. Wolf, R. D. Schreiber, W. J. Storkus, et al. 1994. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J. Immunol. 153: 1697-1706.
21 Kim, Y. S. 2009. Tumor Therapy Applying Membrane-bound Form of Cytokines. Immune Netw. 9: 158-168.   DOI
22 Atkins, M. B., M. J. Robertson, M. Gordon, M. T. Lotze, M. DeCoste, J. S. DuBois, J. Ritz, A. B. Sandler, H. D. Edington, P. D. Garzone, J. W. Mier, C. M. Canning, L. Battiato, H. Tahara, and M. L. Sherman. 1997. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res. 3: 409-417.
23 Car, B. D., V. M. Eng, J. M. Lipman, and T. D. Anderson. 1999. The toxicology of interleukin-12: a review. Toxicol. Pathol. 27: 58-63.   DOI
24 Leonard, J. P., M. L. Sherman, G. L. Fisher, L. J. Buchanan, G. Larsen, M. B. Atkins, J. A. Sosman, J. P. Dutcher, N. J. Vogelzang, and J. L. Ryan. 1997. Effects of single-dose interleukin- 12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90: 2541-2548.
25 Li, Q., L. Li, W. Shi, X. Jiang, Y. Xu, F. Gong, M. Zhou, C. K. 3rd Edwards, and Z. Li. 2006. Mechanism of action differences in the antitumor effects of transmembrane and secretory tumor necrosis factor-alpha in vitro and in vivo. Cancer Immunol. Immunother. 55: 1470-1479.   DOI
26 Rieger, R., D. Whitacre, M. J. Cantwell, C. Prussak, and T. J. Kipps. 2009. Chimeric form of tumor necrosis factor-alpha has enhanced surface expression and antitumor activity. Cancer Gene Ther. 16: 53-64.   DOI
27 el-Shami, K. M., E. Tzehoval, E. Vadai, M. Feldman, and L. Eisenbach. 1999. Induction of antitumor immunity with modified autologous cells expressing membrane-bound murine cytokines. J. Interferon. Cytokine. Res. 19: 1391-1401.   DOI
28 Chang, M. R., W. H. Lee, J. W. Choi, S. O. Park, S. G. Paik, and Y. S. Kim. 2005. Antitumor immunity induced by tumor cells engineered to express a membrane-bound form of IL-2. Exp. Mol. Med. 37: 240-249.   DOI
29 Soo Hoo, W., K. A. Lundeen, J. R. Kohrumel, N. L. Pham, S. W. Brostoff, R. M. Bartholomew, and D. J. Carlo. 1999. Tumor cell surface expression of granulocyte-macrophage colony-stimulating factor elicits antitumor immunity and protects from tumor challenge in the P815 mouse mastocytoma tumor model. J. Immunol. 162: 7343-7349.
30 Yei, S., R. M. Bartholomew, P. Pezzoli, A. Gutierrez, E. Gouveia, D. Bassett, W. Soo Hoo, and D. J. Carlo. 2002. Novel membrane-bound GM-CSF vaccines for the treatment of cancer: generation and evaluation of mbGM-CSF mouse B16F10 melanoma cell vaccine. Gene Ther. 9: 1302-1311.   DOI
31 Choi, J. W., H. Y. Lim, M. R. Chang, J. Y. Cheon, and Y. S. Kim. 2008. Anti-tumor immunity induced by tumor cells expresing a membrane-bound form of IL-2 and SDF-1. Animal Cells and Systems 12: 193-201.   DOI
32 Ji, J., J. Li, L. M. Holmes, K. E. Burgin, X. Yu, T. E. Wagner, and Y. Wei. 2002. Glycoinositol phospholipid-anchored interleukin 2 but not secreted interleukin 2 inhibits melanoma tumor growth in mice. Mol. Cancer Ther. 1: 1019-1024.
33 Ji, J., J. Li, L. M. Holmes, K. E. Burgin, X. Yu, T. E. Wagner, and Y. Wei. 2004. Synergistic anti-tumor effect of glycosylphosphatidylinositol- anchored IL-2 and IL-12. J. Gene Med. 6: 777-785.   DOI
34 Sonn, C. H., H. R. Yoon, I. O. Seong, M.-R. Chang, Y. C. Kim, H. C. Kang, S. C. Suh, and Y. S. Kim. 2006. MethA Fibrosarcoma Cells Expressing Membrane-Bound Forms of IL-2 Enhance Antitumor Immunity. J. Microbiol. Biotech. 16: 1919-1927.
35 Chakrabarti, R., Y. Chang, K. Song, and G. J. Prud'homme. 2004. Plasmids encoding membrane-bound IL-4 or IL-12 strongly costimulate DNA vaccination against carcinoembryonic antigen (CEA). Vaccine 22: 1199-1205.   DOI
36 Baek, S., S. J. Lee, M. J. Kim, and H. Lee. 2012. Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model; Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC. Immune Netw. 12: 269-276.   DOI
37 Kim, Y. S., C. H. Sonn, S. G. Paik, and A. L. Bothwell. 2000. Tumor cells expressing membrane-bound form of IL-4 induce antitumor immunity. Gene Ther. 7: 837-843.   DOI
38 Cimino, A. M., P. Palaniswami, A. C. Kim, and P. Selvaraj. 2004. Cancer vaccine development: protein transfer of membrane- anchored cytokines and immunostimulatory molecules. Immunol. Res. 29: 231-240.   DOI
39 Lim, H. Y., H. Y. Ju, H. Y. Chung, and Y. S. Kim. 2010. Antitumor effects of a tumor cell vaccine expressing a membrane- bound form of the IL-12 p35 subunit. Cancer Biol. Ther. 10: 336-343.   DOI
40 Cohen, J. 1995. IL-12 deaths: explanation and a puzzle. Science 270: 908.
41 Okada, Y., N. Okada, H. Mizuguchi, K. Takahashi, T. Hayakawa, T. Mayumi, and N. Mizuno. 2004. Optimization of antitumor efficacy and safety of in vivo cytokine gene therapy using RGD fiber-mutant adenovirus vector for preexisting murine melanoma. Biochim. Biophys. Acta 1670: 172-180.   DOI
42 Sun, Y., K. Jurgovsky, P. Möller, S. Alijagic, T. Dorbic, J. Georgieva, B. Wittig, and D. Schadendorf. 1998. Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Ther. 5: 481-490.   DOI