Browse > Article
http://dx.doi.org/10.15616/BSL.2022.28.4.211

T Cell Immune Responses against SARS-CoV-2 in the With Corona Era  

Ji-Eun Oh (Department of Biomedical Laboratory Science, Far East University)
Abstract
After more than two years of efforts to end the corona pandemic, a gradual recovery is starting in countries with high vaccination rates. Easing public health policies for a full-fledged post-corona era, such as lifting the mandatory use of outdoor mask and quarantine measures in entry have been considered in Korea. However, the continuous emergence of new variants of SARS-CoV-2 and limitations in vaccine efficacy still remain challenging. Fortunately, T cells and memory T cells, which are key components of adaptive immunity appear to contribute substantially in COVID-19 control. SARS-CoV-2 specific CD4+/CD8+ T cells are induced by natural infection or vaccination, and rapid induction and activation of T cells is mainly associated with viral clearance and attenuated clinical severity. In addition, T cell responses induced by recognition of a wide range of epitopes were minimally affected and conserved against the highly infectious subsets of omicron variants. Polyfunctional SARS-CoV-2 specific T cell memory including stem cell-like memory T cells were also developed in COVID-19 convalescent patients, suggesting long lasting protective T cell immunity. Thus, a robust T-cell immune response appears to serve as a reliable and long-term component of host protection in the context of reduced efficacy of humoral immunity and persistent mutations and/or immune escape.
Keywords
COVID-19; SARS-CoV-2; Omicron variants; Vaccines; T cell; Memory T cell; T-cell immune response; Host protection;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhao H, Lu L, Peng Z, et al. Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect. 2022. 11: 277-283. http://doi:10.1080/22221751.2021.2023329   DOI
2 Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010. 28: 445-489. http://doi:10.1146/annurev-immunol-030409-101212   DOI
3 Zhuang Z, Lai X, Sun J, et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med. 2021. 218: e20202187. http://doi:10.1084/jem.20202187   DOI
4 Aleem A, Akbar Samad AB, Slenker AK. Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19). 2022. StatPearls Publishing (Internet).
5 Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl Med. 2021. 384: 403-416. http://doi:10.1056/NEJMoa2035389   DOI
6 Bange EM, Han NA, Wileyto P, et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat Med. 2021. 27: 1280-1289. http://doi:10.1038/s41591-021-01386-7   DOI
7 Bergamaschi L, Mescia F, Turner L, et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity. 2021. 54: 1257-1275. http://doi:10.1016/j.immuni.2021.05.010   DOI
8 Bertoletti A, Le Bert N, Qui M, Tan AT. SARS-CoV-2-specific T cells in infection and vaccination. Cell Mol Immunol. 2021. 18: 2307-2312. http://doi:10.1038/s41423-021-00743-3   DOI
9 Bonifacius A, Tischer-Zimmermann S, Dragon AC, et al. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity. 2021. 54: 340-354. http://doi:10.1016/j.immuni.2021.01.008   DOI
10 Breton G, Mendoza P, Hagglof T, et al. Persistent cellular immunity to SARS-CoV-2 infection. J Exp Med. 2021. 218: e20202515. http://doi:10.1084/jem.20202515   DOI
11 Brouwer P, Caniels TG, van der Straten K, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020. 369: 643-650. http://doi:10.1126/science.abc5902   DOI
12 Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990. 105: 435-446. https://doi:10.1017/s0950268800048019   DOI
13 Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022. 608: 593-602. http://doi:10.1038/s41586-022-04980-y   DOI
14 Castro Dopico X, Ols S, Lore K, Karlsson Hedestam GB. Immunity to SARS-CoV-2 induced by infection or vaccination. J Intern Med. 2022. 291: 32-50. http://doi:10.1111/joim.13372   DOI
15 Choi SJ, Kim DU, Noh JY, et al. T cell epitopes in SARS-CoV-2 proteins are substantially conserved in the Omicron variant. Cell Mol Immunol. 2022. 19: 447-448. http://doi:10.1038/s41423-022-00838-5   DOI
16 Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020. 383: 1544-1555. http://doi:10.1056/NEJMoa2024671   DOI
17 Doria-Rose N, Suthar MS, Makowski M, et al. mRNA-1273 Study Group. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. N Engl J Med. 2021. 384: 2259-2261. http://doi:10.1056/NEJMc2103916   DOI
18 Cromer D, Steain M, Reynaldi A, et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. The Lancet. Microbe. 2022. 3: e52-e61. http://doi:10.1016/S2666-5247(21)00267-6   DOI
19 Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021. 371: eabf4063. http://doi:10.1126/science.abf4063   DOI
20 de Silva TI, Liu G, Lindsey BB, et al. The impact of viral mutations on recognition by SARS-CoV-2 specific T cells. iScience. 2021. 24: 103353-103368. http://doi:10.1016/j.isci.2021.103353   DOI
21 Dowell AC, Butler MS, Jinks E, et al. Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nat Immunol. 2022. 23: 40-49. http://doi:10.1038/s41590-021-01089-8   DOI
22 Ferguson N, Ghani A, Hinsley W, Volz E. Report 50: Hospitalisation Risk for Omicron Cases in England (Imperial College London, 2021). Retrieved from https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-50-severity-omicron.
23 Ferretti AP, Kula T, Wang Y, et al. Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein. Immunity. 2020. 53: 1095-1107. http://doi:10.1016/j.immuni.2020.10.006   DOI
24 Garcia-Beltran WF, Lam EC, St Denis K, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021. 184: 2372-2383. https://doi:10.1016/j.cell.2021.03.013   DOI
25 Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022. 28: 202-221. http://doi:10.1016/j.cmi.2021.10.005   DOI
26 Galani IE, Rovina N, Lampropoulou V, et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol. 2021. 22: 32-40. http://doi:10.1038/s41590-020-00840-x   DOI
27 Gao Y, Cai C, Grifoni A, et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat Med. 2022. 28: 472-476. http://doi:10.1038/s41591-022-01700-x   DOI
28 Geers D, Shamier MC, Bogers S, et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci Immunol. 2021. 6: eabj1750. http://doi:10.1126/sciimmunol.abj1750   DOI
29 Geurtsvan Kessel CH, Geers D, Schmitz KS, et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci Immunol. 2022. 7: eabo2202. http://doi:10.1126/sciimmunol.abo2202   DOI
30 Goel RR, Painter MM, Apostolidis SA, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021. 374: abm0829. https://doi:10.1126/science.abm08297   DOI
31 Grifoni A, Sidney J, Vita R, et al. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell host & microbe. 2021. 29: 1076-1092. http://doi:10.1016/j.chom.2021.05.010   DOI
32 Henss L, Scholz T, von Rhein C, Wieters I, Borgans F, Eberhardt FJ. Analysis of Humoral Immune Responses in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Infect Dis. 2021. 223: 56-61. http://doi:10.1093/infdis/jiaa680   DOI
33 Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020. 181: 1489-1501. http://doi:10.1016/j.cell.2020.05.015   DOI
34 Gulati K, Prendecki M, Clarke C, Willicombe M, McAdoo S. COVID-19 Reinfection in a Patient Receiving Immunosuppressive Treatment for Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol. 2021. 73: 1091-1092. http://doi:10.1002/art.41671   DOI
35 Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection. 2022. 50: 11-25. http://doi:10.1007/s15010-021-01664-z   DOI
36 Ibarrondo FJ, Fulcher JA, Goodman-Meza D, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N Engl J Med. 2020. 383: 1085-1087. https://doi:10.1056/NEJMc2025179   DOI
37 Jeong HW, Kim JM, Jung MK, et al. Enhanced antibody responses in fully vaccinated individuals against pan-SARS-CoV-2 variants following Omicron breakthrough infection. Cell Reports Med. 2022. 3: 100764-1007800. http://doi:10.1016/j.xcrm.2022.100764   DOI
38 Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020. 584: 115-119. http://doi:10.1038/s41586-020-2380-z   DOI
39 Jung JH, Rha MS, Sa M, et al. SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells. Nat Commun. 2021. 12: 4043-4054. http://doi:10.1038/s41467-021-24377-1   DOI
40 Jung MK, Jeong SD, Noh JY, et al. BNT162b2-induced memory T cells respond to the Omicron variant with preserved poly-functionality. Nat Microbiol. 2022. 7: 909-917. http://doi:10.1038/s41564-022-01123-x   DOI
41 Kalimuddin S, Tham CYL, Qui M, et al. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med (NY). 2021. 2: 682-688. http://doi:10.1016/j.medj.2021.04.003   DOI
42 Kaur SP, Gupta V. COVID-19 Vaccine: a comprehensive status report. Virus Res. 2020. 288: 198114-198125. https://doi:10.1016/j.virusres.2020.198114   DOI
43 Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022. 603: 488-492. http://doi:10.1038/s41586-022-04460-3   DOI
44 Kent SJ, Khoury DS, Reynaldi A, et al. Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast?. Nat Rev Immunol. 2022. 22: 387-397. http://doi:10.1038/s41577-022-00716-1   DOI
45 Khosroshahi ML, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. Int Immunopharmacol. 2021. 93: 107364-107378. http://doi:10.1016/j.intimp.2020.107364   DOI
46 Kim EJ, Lee D. Coronaviruses: SARS, MERS and COVID-19. Korean J Clin Lab Sci. 2020. 52: 297-309. http://doi.org/10.15324/kjcls.2020.52.4.297   DOI
47 Kreutmair S, Unger S, Nunez NG, et al. Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity. 2021. 54: 1578-1593. http://doi:10.1016/j.immuni.2021.05.002   DOI
48 Kudlay D, Kofiadi I, Khaitov M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines. 2022. 10: 242-257. http://doi:10.3390/vaccines10020242   DOI
49 Le Bert N, Clapham HE, Tan AT, et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med. 2021. 218: e20202617. http://doi:10.1084/jem.20202617   DOI
50 Kustin T, Harel N, Finkel U, et al. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med. 2021. 27: 1379-1384. https://doi:10.1038/s41591-021-01413-7   DOI
51 Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020. 584: 457-462. http://doi:10.1038/s41586-020-2550-z   DOI
52 Lee CG, Lee D. Comparison of COVID-19 Vaccines Introduced in Korea [Internet]. Biomedical Science Letters. 2022. 28: 67-82. http://dx.doi.org/10.15616/bsl.2022.28.2.67   DOI
53 Logunov DY, Dolzhikova IV, Shcheblyakov D, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021. 397: 671-681. http://doi:10.1016/S0140-6736(21)00234-8   DOI
54 Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020. 26: 845-848. http://doi:10.1038/s41591-020-0897-1 (Long, 2020a)   DOI
55 Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020. 26: 1200-1204. http://doi:10.1038/s41591-020-0965-6 (Long, 2020b)   DOI
56 Lou B, Li TD, Zheng SF, et al. Serology characteristics of SARSCoV-2 infection after exposure and post-symptom onset. Eur Respir J. 2020. 56: 2000763-2000772. http://doi:10.1183/13993003.00763-2020   DOI
57 McMahan K, Yu J, Mercado NB, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021. 590: 630-634. http://doi:10.1038/s41586-020-03041-6   DOI
58 Lu R, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. 2395: 565-574. https://doi:10.1016/S0140-6736(20)30251-8   DOI
59 Mazzoni A, Di Lauria N, Maggi L, et al. First-dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in subjects who have recovered from COVID19. J Clin Invest. 2021. 131: e149150. http://doi:10.1172/JCI149150   DOI
60 McMahan K, Yu J, Mercado NB, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021. 590: 630-634. http://doi:10.1038/s41586-020-03041-6   DOI
61 Meckiff BJ, Ramirez-Suastegui C, Fajardo V, et al. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T cells in COVID-19. Cell. 2020. 183: 1340-1353. http://doi:10.1016/j.cell.2020.10.001   DOI
62 Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England). 2020. 395: 1033-1034. http://doi:10.1016/S0140-6736(20)30628-0   DOI
63 Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020. 20: 355-362. http://doi:10.1038/s41577-020-0331-4   DOI
64 Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022. 23: 186-193. http://doi:10.1038/s41590-021-01122-w   DOI
65 Murphy K, Weaver C. Janeway's immunobiology. 2016. New York and London. Garland Science.
66 Naaber P, Tserel L, Kangro K, et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study. Lancet Reg Health Eur. 2021. 10: 100208-100216. http://doi:10.1016/j.lanepe.2021.100208   DOI
67 Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020. 21: 1336-1345. http://doi:10.1038/s41590-020-0782-6   DOI
68 Ng KW, Faulkner N, Cornish GH, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020. 370: 1339-1343. http://doi:10.1126/science.abe1107   DOI
69 Notarbartolo S, Ranzani V, Bandera A, et al. Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. Science Immunology. 2021. 6: eabg5021. http://doi:10.1126/sciimmunol.abg5021   DOI
70 Painter MM, Mathew D, Goel RR, et al. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity. 2021. 54: 2133-2142. http://doi:10.1016/j.immuni.2021.08.001   DOI
71 Pierce CA, Sy S, Galen B, et al. Natural mucosal barriers and COVID-19 in children. JCI Insight. 2021. 6: e148694. http://doi:10.1172/jci.insight.148694   DOI
72 Piot P, Larson HJ, O'Brien KL, et al. Immunization: vital progress, unfinished agenda. Nature. 2019. 575: 119-129. http://doi:10.1038/s41586-019-1656-7   DOI
73 Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020. 383: 2603-2615. http://doi:10.1056/NEJMoa2034577   DOI
74 Rahimi A, Mirzazadeh A, Tavakolpour S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics. 2021. 113: 1221-1232. https://doi:10.1016/j.ygeno.2020.09.059   DOI
75 Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020. 183: 996-1012. http://doi:10.1016/j.cell.2020.09.038   DOI
76 Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020. 584: 437-442. http://doi:10.1038/s41586-020-2456-9   DOI
77 Rodda LB, Netland J, Shehata L, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021. 184: 169-183. http://doi:10.1016/j.cell.2020.11.029   DOI
78 Rodrigues PRS, Alrubayyi A, Pring E, et al. Innate immunology in COVID-19-a living review. Part II: dysregulated inflammation drives immunopathology. Oxf Open Immunol. 2020. 1: iqaa005. http://doi:10.1093/oxfimm/iqaa005   DOI
79 Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020. 16: e1008737. http://doi:10.1371/journal.ppat.1008737   DOI
80 Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021. 21: 475-484. http://doi:10.1038/s41577-021-00578-z   DOI
81 Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021. 21: 475-484. http://doi:10.1038/s41577-021-00578-z   DOI
82 Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell. 2020. 183: 158-168. http://doi:10.1016/j.cell.2020.08.017   DOI
83 Sahin U, Muik A, Derhovanessian E, et al. BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020. 586: 594-599. http://doi:10.1038/s41586-020-2814-7   DOI
84 Sahin U, Muik A, Vogler I, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021. 595: 572-577. http://doi:10.1038/s41586-021-03653-6   DOI
85 Saxena SK, Kumar S, Ansari S, et al. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022. 94: 1738-1744. http://doi:10.1002/jmv.27524   DOI
86 Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021. 184: 861-880. http://doi:10.1016/j.cell.2021.01.007   DOI
87 Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev. 2022. 310: 27-46. http://doi:10.1111/imr.13089   DOI
88 Shah M, Woo HG. Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Mol Cells. 2021. 44: 408-421. http://doi:10.14348/molcells.2021.0026   DOI
89 Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021. 384: 1899-1909. http://doi:10.1056/NEJMoa2103055   DOI
90 Shuai H, Chan JFW, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022. 603: 693-699. http://doi:10.1038/s41586-022-04442-5   DOI
91 Stephenson E, Reynolds G, Botting RA, et al. Single-cell multiomics analysis of the immune response in COVID-19. Nat Med. 2021. 27: 904-916. http://doi:10.1038/s41591-021-01329-2   DOI
92 Simonovich VA, Burgos Pratx LD, Scibona P, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J med. 2021. 384: 619-629. http://doi:10.1056/NEJMoa2031304   DOI
93 Skelly DT, Harding AC, Gilbert-Jaramillo J, et al. Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern. Nat Commun. 2021. 12: 5061-5072. http://doi:10.1038/s41467-021-25167-5   DOI
94 Soresina A, Moratto D, Chiarini M, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol. 2020. 31: 565-569. http://doi:10.1111/pai.13263   DOI
95 Szabo PA, Dogra P, Gray JI, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021. 54: 797-814. http://doi:10.1016/j.immuni.2021.03.005   DOI
96 Tan AT, Linster M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Reports. 2021. 34: 108728-108740. http://doi:10.1016/j.celrep.2021.108728   DOI
97 Tang P, Hasan MR, Chemaitelly H, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat Med. 2021. 27: 2136-2143. https://doi:10.1038/s41591-021-01583-4   DOI
98 Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022. 185: 847-859. http://doi:10.1016/j.cell.2022.01.015   DOI
99 Tartof SY, Slezak JM, Fischer H, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet. 2021. 398: 1407-1416. http://doi:10.1016/S0140-6736(21)02183-8   DOI
100 Tarke A, Sidney J, Kidd CK, et al. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARSCoV-2 epitopes in COVID-19 cases. Cell Rep Med. 2021. 2: 100204-100223. http://doi:10.1016/j.xcrm.2021.100204   DOI
101 Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021. 21: 195-197. http://doi:10.1038/s41577-021-00526-x   DOI
102 Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, Heise MT. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio. 2015. 6: e00638-15. http://doi:10.1128/mBio.00638-15   DOI
103 Tseng HF, Ackerson BK, Luo Y, et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat Med. 2022. 28: 1063-1071. http://doi:10.1038/s41591-02201753-y   DOI
104 UKHSA. SARS-CoV-2 Variants of Concern and Variants Under Investigation in England: Technical Briefing 31, 2021.
105 Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020. 52: 910-941. http://doi:10.1016/j.immuni.2020.05.002   DOI
106 Vardhana S, Baldo L, Morice WG 2nd, et al. Understanding T cell responses to COVID-19 is essential for informing public health strategies. Sci Immunol. 2022. 7: eabo1303. https://doi:10.1126/sciimmunol.abo1303   DOI
107 Vogel AB, Kanevsky I, Che Y, et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature. 2021. 592: 283-289. http://doi:10.1038/s41586-021-03275-y   DOI
108 Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021a. 593: 130-135. http://doi:10.1038/s41586-021-03398-2   DOI
109 Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021. 397: 99-111. http://doi:10.1016/S0140-6736(20)32661-1   DOI
110 Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Hematol. 2020. 189: 428-437. http://doi:10.1111/bjh.16659   DOI
111 Wang Z, Lorenzi J, Muecksch F, et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med. 2021b. 13: eabf1555. http://doi:10.1126/scitranslmed.abf1555   DOI
112 Wheatley AK, Juno JA, Wang JJ, et al. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat Commun. 2021. 12: 1162-1172. https://doi:10.1038/s41467-021-21444-5   DOI
113 Widge AT, Rouphael NG, Jackson LA, et al. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N Engl J Med. 2021. 384: 80-82. http://doi:10.1056/NEJMc2032195   DOI
114 Willyard S. What the Omicron wave is revealing about human immunity. Retrieved from nature website: https://www.nature.com/articles/d41586-022-00214-3.
115 Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet (London, England). 2022. 399: 437-446. http://doi:10.1016/S0140-6736(22)00017-4   DOI
116 Zhang Z, Mateus J, Coelho CH, et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell. 2022. 185: 2434-2451. http://doi:10.1016/j.cell.2022.05.022   DOI