Browse > Article
http://dx.doi.org/10.4110/in.2012.12.6.230

Activation-induced Cytidine Deaminase in B Cell Immunity and Cancers  

Park, Seok-Rae (Department of Microbiology, College of Medicine, Konyang University)
Publication Information
IMMUNE NETWORK / v.12, no.6, 2012 , pp. 230-239 More about this Journal
Abstract
Activation-induced cytidine deaminase (AID) is an enzyme that is predominantly expressed in germinal center B cells and plays a pivotal role in immunoglobulin class switch recombination and somatic hypermutation for antibody (Ab) maturation. These two genetic processes endow Abs with protective functions against a multitude of antigens (pathogens) during humoral immune responses. In B cells, AID expression is regulated at the level of either transcriptional activation on AID gene loci or post-transcriptional suppression of AID mRNA. Furthermore, AID stabilization and targeting are determined by post-translational modifications and interactions with other cellular/nuclear factors. On the other hand, aberrant expression of AID causes B cell leukemias and lymphomas, including Burkitt's lymphoma caused by c-myc/IgH translocation. AID is also ectopically expressed in T cells and non-immune cells, and triggers point mutations in relevant DNA loci, resulting in tumorigenesis. Here, I review the recent literatures on the function of AID, regulation of AID expression, stability and targeting in B cells, and AID-related tumor formation.
Keywords
Activation-induced cytidine deaminase; B cell; Antibody; Cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Luo, H. and M. Tian. 2010. Transcription factors PU.1 and IRF4 regulate activation induced cytidine deaminase in chicken B cells. Mol. Immunol. 47: 1383-1395.   DOI
2 Pritchard, C. C., H. H. Cheng, and M. Tewari. 2012. Micro- RNA profiling: approaches and considerations. Nat. Rev. Genet. 13: 358-369.
3 Teng, G., P. Hakimpour, P. Landgraf, A. Rice, T. Tuschl, R. Casellas, and F. N. Papavasiliou. 2008. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28: 621-629.   DOI
4 Dorsett, Y., K. M. McBride, M. Jankovic, A. Gazumyan, T. H. Thai, D. F. Robbiani, M. Di Virgilio, B. Reina San-Martin, G. Heidkamp, T. A. Schwickert, T. Eisenreich, K. Rajewsky, and M. C. Nussenzweig. 2008. MicroRNA-155 suppresses activation- induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28: 630-638.   DOI
5 de Yebenes, V. G., L. Belver, D. G. Pisano, S. Gonzalez, A. Villasante, C. Croce, L. He, and A. R. Ramiro. 2008. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205: 2199-2206.   DOI
6 Borchert, G. M., N. W. Holton, and E. D. Larson. 2011. Repression of human activation induced cytidine deaminase by miR-93 and miR-155. BMC Cancer 11: 347.   DOI
7 Chaudhuri, J., C. Khuong, and F. W. Alt. 2004. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430: 992-998.   DOI
8 Basu, U., J. Chaudhuri, C. Alpert, S. Dutt, S. Ranganath, G. Li, J. P. Schrum, J. P. Manis, and F. W. Alt. 2005. The AID antibody diversification enzyme is regulatedby protein kinase A phosphorylation. Nature 438: 508-511.   DOI
9 McBride, K. M., A. Gazumyan, E. M. Woo, V. M. Barreto, D. F. Robbiani, B. T. Chait, and M. C. Nussenzweig. 2006. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 103: 8798-8803.   DOI
10 McBride, K. M., A. Gazumyan, E. M. Woo, T. A. Schwickert, B. T. Chait, and M. C. Nussenzweig. 2008. Regulation of class switch recombination and somatic mutation by AID phosphorylation. J. Exp. Med. 205: 2585-2594.   DOI
11 Basu, U., Y. Wang, and F. W. Alt. 2008. Evolution of phosphorylation- dependent regulation of activation-induced cytidine deaminase. Mol. Cell 32: 285-291.   DOI
12 Cheng, H. L., B. Q. Vuong, U. Basu, A. Franklin, B. Schwer, J. Astarita, R. T. Phan, A. Datta, J. Manis, F. W. Alt, and J. Chaudhuri. 2009. Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc. Natl. Acad. Sci. U.S.A. 106: 2717-2722.   DOI
13 Gazumyan, A., K. Timachova, G. Yuen, E. Siden, M. Di Virgilio, E. M. Woo, B. T. Chait, B. Reina San-Martin, M. C. Nussenzweig, and K. M. McBride. 2011. Amino-terminal phosphorylation of activation-induced cytidine deaminase suppresses c-myc/IgH translocation. Mol. Cell. Biol. 31:442-449.   DOI
14 Demorest, Z. L., M. Li, and R. S. Harris. 2011. Phosphorylation directly regulates theintrinsic DNA cytidine deaminase activity of activation-induced deaminase and APOBEC3G protein. J. Biol. Chem. 286: 26568-26575.   DOI
15 Li, G., E. J. Pone, D. C. Tran, P. J. Patel, L. Dao, Z. Xu, and P. Casali. 2012. Iron inhibits activation-induced cytidine deaminase enzymatic activity and modulates immunoglobulin class switch DNA recombination. J. Biol. Chem. 287:21520-21529.   DOI
16 Orthwein, A., A. M. Patenaude, B. Affar el, A. Lamarre, J. C. Young, and J. M. Di Noia. 2010. Regulation of activation- induced deaminase stability and antibody gene diversification by Hsp90. J. Exp. Med. 207: 2751-2765.   DOI
17 Orthwein, A., A. Zahn, S. P. Methot, D. Godin, S. G. Conticello, K. Terada, and J. M. Di Noia. 2011. Optimal functional levels of activation-induced deaminasespecifically require the Hsp40 DnaJa1. EMBO J. 31: 679-691.
18 Häsler, J., C. Rada, and M. S. Neuberger. 2011. Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor $1\alpha$ (eEF1A). Proc. Natl. Acad. Sci. U.S.A. 108: 18366-18371.   DOI
19 Geisberger, R., C. Rada, and M. S. Neuberger. 2009. The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence. Proc. Natl. Acad. Sci. U.S.A. 106: 6736-6741.   DOI
20 Ellyard, J. I., A. S. Benk, B. Taylor, C. Rada, and M. S. Neuberger. 2011. The dependence of Ig class-switching on the nuclear export sequence of AID likely reflects interaction with factors additional to Crm1 exportin. Eur. J. Immunol. 41: 485-490.   DOI
21 Zaprazna, K. and M. L. Atchison. 2012. YY1 controls immunoglobulin class switch recombination and nuclear activation- induced deaminase levels. Mol. Cell. Biol. 32: 1542-1554.   DOI
22 Arioka, Y., A. Watanabe, K. Saito, and Y. Yamada. 2012. Activation-induced cytidine deaminase alters the subcellular localization of Tet family proteins. PLoS One 7: e45031.
23 Conticello, S. G., K. Ganesh, K. Xue, M. Lu, C. Rada, M. S. Neuberger. 2008. Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol. Cell 31: 474-484.   DOI
24 Hu, Y., I. Ericsson, K. Torseth, S. P. Methot, O. Sundheim, N. B. Liabakk, G. Slupphaug, J. M. Di Noia, H. E. Krokan, and B. Kavli. 2012. A Combined Nuclear and Nucleolar Localization Motif in Activation-Induced Cytidine Deaminase (AID) Controls Immunoglobulin Class Switching. J. Mol. Biol. doi:10.1016/j.jmb.2012.11.026.
25 Uchimura, Y., L. F. Barton, C. Rada, and M. S. Neuberger. 2011. REG-$\gamma$ associates with and modulates the abundance of nuclear activation-induced deaminase. J. Exp. Med. 208: 2385-2391.   DOI
26 Vuong, B. Q., M. Lee, S. Kabir, C. Irimia, S. Macchiarulo, G. S. McKnight, and J. Chaudhuri. 2009. Specific recruitment of protein kinase A tothe immunoglobulin locus regulates class-switch recombination. Nat. Immunol. 10: 420-426.78. Xu, Z., Z. Fulop, G. Wu, E. J. Pone, J. Zhang, T. Mai, L. M. Thomas, A. Al-Qahtani, C. A. White, S. R. Park, P. Steinacker, Z. Li, J. 3rd. Yates, B. Herron, M. Otto, H. Zan, H. Fu, and P. Casali. 2010. 14-3-3 adaptor proteins recruit AID to 5'-AGCT-3'-rich switch regions for class switch recombination. Nat. Struct. Mol. Biol. 17: 1124-1135.   DOI
27 Nowak, U., A. J. Matthews, S. Zheng, and J. Chaudhuri. 2011. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA. Nat. Immunol. 12: 160-166.   DOI
28 Basu, U., F. L. Meng, C. Keim, V. Grinstein, E. Pefanis, J. Eccleston, T. Zhang, D. Myers, C. R. Wasserman, D. R. Wesemann, K. Januszyk, R. I. Gregory, H. Deng, C. D. Lima, and F. W. Alt. 2011. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144: 353-363.   DOI
29 Jeevan-Raj, B. P., I. Robert, V. Heyer, A. Page, J. H. Wang, F. Cammas, F. W. Alt, R. Losson, and B. Reina-San-Martin. 2011. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J. Exp. Med. 208: 1649-1660.   DOI
30 Ranjit, S., L. Khair, E. K. Linehan, A. J. Ucher, M. Chakrabarti, C. E. Schrader, and J. Stavnezer. 2011. AID binds cooperatively with UNG and Msh2-Msh6 to Ig switch regions dependent upon the AID C terminus. J. Immunol. 187: 2464-2475.   DOI
31 Zan, H., C. A. White, L. M. Thomas, T. Mai, G. Li, Z. Xu, J. Zhang, and P. Casali. 2012. Rev1 recruits ung to switch regions and enhances du glycosylation for immunoglobulin class switch DNA recombination. Cell Rep. 2: 1220-1232.   DOI
32 Stanlie, A., N. A. Begum, H. Akiyama, and T. Honjo. 2012. The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination. PLoS Genet. 8: e1002675.   DOI
33 Pavri, R., A. Gazumyan, M. Jankovic, M. Di Virgilio, I. Klein, C. Ansarah-Sobrinho, W. Resch, A. Yamane, B. Reina San-Martin, V. Barreto, T. J. Nieland, D. E. Root, R. Casellas, and M. C. Nussenzweig. 2010. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143: 122-133.   DOI
34 Okazaki, I. M., K. Okawa, M. Kobayashi, K. Yoshikawa, S. Kawamoto, H. Nagaoka, R. Shinkura, Y. Kitawaki, H. Taniguchi, T. Natsume, S. Iemura, and T. Honjo. 2011. Histone chaperone Spt6 is required for class switch recombination but not somatic hypermutation. Proc. Natl. Acad. Sci. U.S.A. 108: 7920-7925.   DOI
35 Begum, N. A., A. Stanlie, M. Nakata, H. Akiyama, and T. Honjo. 2012. The histone chaperone Spt6 is requiredfor activation- induced cytidine deaminase target determination through H3K4me3 regulation. J. Biol. Chem. 287: 32415-32429.   DOI
36 Maeda, K., S. K. Singh, K. Eda, M. Kitabatake, P. Pham, M. F. Goodman, and N. Sakaguchi. 2010. GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region DNA. J. Biol.Chem. 285: 23945-23953.   DOI
37 Tanaka, A., H. M. Shen, S. Ratnam, P. Kodgire, and U. Storb. 2010. Attracting AIDto targets of somatic hypermutation. J. Exp. Med. 207: 405-415.   DOI
38 Kim, Y. and M. Tian. 2009. NF-kappaB family of transcription factor facilitates gene conversion in chicken B cells. Mol. Immunol. 46: 3283-3291.   DOI
39 Kim, Y. and M. Tian. 2010. The recruitment of activation induced cytidine deaminase to the immunoglobulin locus by a regulatory element. Mol. Immunol. 47: 1860-1865.   DOI
40 Kanehiro, Y., K. Todo, M. Negishi, J. Fukuoka, W. Gan, T. Hikasa, Y. Kaga, M. Takemoto, M. Magari, X. Li, J. L. Manley, H. Ohmori, and N. Kanayama. 2012. Activation-induced cytidine deaminase (AID)-dependent somatichypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1. Proc. Natl. Acad. Sci. U.S.A. 109: 1216-1221.   DOI
41 Robbiani, D. F. and M. C. Nussenzweig. 2012. Chromosome Translocation, B Cell Lymphoma, and Activation-induced Cytidine Deaminase. Annu. Rev. Pathol. [Epub ahead of print]
42 Staszewski, O., R. E. Baker, A. J. Ucher, R. Martier, J. Stavnezer, and J. E. Guikema. 2011. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol. Cell 41: 232-242.   DOI
43 Greisman, H. A., Z. Lu, A. G. Tsai, T. C. Greiner, H. S. Yi, and M. R. Lieber. 2012. IgH partner breakpoint sequences provide evidence that AID initiates t(11;14) and t(8;14) chromosomal breaks in mantle cell and Burkitt lymphomas. Blood 120: 2864-2867.   DOI
44 Robbiani, D. F., S. Bunting, N. Feldhahn, A. Bothmer, J. Camps, S. Deroubaix, K. M. McBride, I. A. Klein, G. Stone, T. R. Eisenreich, T. Ried, A. Nussenzweig, and M. C. Nussenzweig. 2009. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell 36: 631-641.   DOI
45 Jankovic, M., D. F. Robbiani, Y. Dorsett, T. Eisenreich, Y. Xu, A. Tarakhovsky, A. Nussenzweig, and M. C. Nussenzweig. 2010. Role of the translocation partner in protection against AID-dependent chromosomal translocations. Proc. Natl. Acad. Sci. U.S.A. 107: 187-192.   DOI
46 Komeno, Y., J. Kitaura, N. Watanabe-Okochi, N. Kato, T. Oki, F. Nakahara, Y. Harada, H. Harada, R. Shinkura, H. Nagaoka, Y. Hayashi, T. Honjo, and T. Kitamura. 2010. AID-induced T-lymphoma or Bleukemia/lymphoma in a mouse BMT model. Leukemia 24: 1018-1024.   DOI
47 Feldhahn, N., N. Henke, K. Melchior, C. Duy, B. N. Soh, F. Klein, G. von Levetzow, B. Giebel, A. Li, W. K. Hofmann, H. Jumaa, and M. Müschen. 2007. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1- transformed acute lymphoblastic leukemia cells. J. Exp. Med. 204: 1157-1166.   DOI
48 Gruber, T. A., M. S. Chang, R. Sposto, and M. Müschen. 2010. Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B-cell lineage acute lymphoblastic leukemia. Cancer Res. 70: 7411-7420.   DOI
49 Klemm, L., C. Duy, I. Iacobucci, S. Kuchen, G. von Levetzow, N. Feldhahn, N. Henke, Z. Li, T. K. Hoffmann, Y. M. Kim, W. K. Hofmann, H. Jumaa, J. Groffen, N. Heisterkamp, G. Martinelli, M. R. Lieber, R. Casellas, and M. Muschen. 2009. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell 16: 232-245.   DOI
50 Iacobucci, I., A. Lonetti, F. Messa, A. Ferrari, D. Cilloni, S. Soverini, F. Paoloni, F. Arruga, E. Ottaviani, S. Chiaretti, M.Messina, M. Vignetti, C. Papayannidis, A. Vitale, F. Pane, P. P. Piccaluga, S. Paolini, G. Berton, A. Baruzzi, G. Saglio, M. Baccarani, R. Foa, and G. Martinelli. 2010. Different isoforms of the B-cell mutator activation-induced cytidine deaminase are aberrantly expressed in BCR-ABL1-positive acute lymphoblastic leukemia patients. Leukemia 24: 66-73.   DOI
51 Palacios, F., P. Moreno, P. Morande, C. Abreu, A. Correa, V. Porro, A. I. Landoni, R. Gabus, M. Giordano, G. Dighiero, O. Pritsch, and P. Oppezzo. 2010. High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease. Blood 115: 4488-4496.   DOI
52 Hancer, V. S., M. Kose, R. Diz-Kucukkaya, A. S. Yavuz, and M. Aktan. 2011. Activation-induced cytidine deaminase mRNA levels in chronic lymphocytic leukemia. Leuk. Lymphoma 52: 79-84.
53 Qin, H., K. Suzuki, M. Nakata, S. Chikuma, N. Izumi, T. Huong le, M. Maruya, S. Fagarasan, M. Busslinger, T. Honjo, and H. Nagaoka. 2011. Activation-induced cytidine deaminase expression in CD4+ T cells is associated with a unique IL-10-producing subset that increases with age. PLoS One 6: e29141.   DOI
54 Ishikawa, C., S. Nakachi, M. Senba, M. Sugai, and N. Mori. 2011. Activation of AID by human T-cell leukemia virus Tax oncoprotein and the possible role of its constitutive expression in ATL genesis. Carcinogenesis 32: 110-119.   DOI
55 Komori, J., H. Marusawa, T. Machimoto, Y. Endo, K. Kinoshita, T. Kou, H. Haga, I. Ikai, S. Uemoto, and T. Chiba. 2008. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 47: 888-896.   DOI
56 Takai, A., H. Marusawa, Y. Minaki, T. Watanabe, H. Nakase, K. Kinoshita, G. Tsujimoto, and T. Chiba. 2012. Targeting activation-induced cytidine deaminase prevents colon cancer development despite persistent colonic inflammation. Oncogene 31: 1733-1742.   DOI
57 Endo, Y., H. Marusawa, T. Kou, H. Nakase, S. Fujii, T. Fujimori, K. Kinoshita, T. Honjo, and T. Chiba. 2008. Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology 135: 889-898.e1-3.   DOI
58 Morisawa, T., H. Marusawa, Y. Ueda, A. Iwai, I. M. Okazaki, T. Honjo, and T. Chiba. 2008. Organ-specific profiles of genetic changes in cancers caused by activation-induced cytidine deaminase expression. Int. J. Cancer 123: 2735-2740.   DOI
59 Endo, Y., H. Marusawa, and T. Chiba. 2011. Involvement of activation-induced cytidine deaminase in the development of colitis-associated colorectal cancers. J. Gastroenterol. 46 Suppl 1: 6-10.   DOI
60 Morita, S., Y. Matsumoto, Okuyama, K. Ono, Y. Kitamura, A. Tomori, T. Oyama, Y. Amano, Y. Kinoshita, T. Chiba, and H. Marusawa. 2011 Bile acid-induced expression of activation- induced cytidine deaminase during the development of Barrett's oesophageal adenocarcinoma. Carcinogenesis 32: 1706-1712.   DOI
61 Shinmura, K., H. Igarashi, M. Goto, H. Tao, H. Yamada, S. Matsuura, M. Tajima, T. Matsuda, A. Yamane, K. Funai, M. Tanahashi, H. Niwa, H. Ogawa, and H. Sugimura. 2011. Aberrant expression and mutation-inducing activity of AID in human lung cancer. Ann. Surg. Oncol. 18: 2084-2092.   DOI
62 Miyazaki, Y., H. Inoue, K. Kikuchi, K. Ochiai, and K. Kusama. 2012. Activation-induced cytidine deaminase mRNA expression in oral squamous cell carcinoma-derived cell lines is upregulated by inflammatory cytokines. J. Oral. Sci. 54:71-75.   DOI
63 Matsumoto. Y., H. Marusawa, K. Kinoshita, Y. Endo, T. Kou, T. Morisawa, T. Azuma, I. M. Okazaki, T. Honjo, and T. Chiba. 2007. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat. Med. 13: 470-476.   DOI
64 Matsumoto, Y., H. Marusawa, K. Kinoshita, Y. Niwa, Y. Sakai, and T. Chiba. 2010. Up-regulation of activation-induced cytidine deaminase causes genetic aberrations at the CDKN2b-CDKN2a in gastric cancer. Gastroenterology 139:1984-1994.   DOI
65 Stavnezer, J., J. E. Guikema, and C. E. Schrader. 2008. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26: 261-292.   DOI
66 Goto, A., M. Hirahashi, M. Osada, K. Nakamura, T. Yao, M. Tsuneyoshi, R. Takayanagi, and Y. Oda. 2011. Aberrant activation-induced cytidine deaminase expression is associated with mucosal intestinalization in the early stage of gastric cancer. Virchows Arch. 458: 717-724.   DOI
67 Xu, Z., Z. Fulop, G. Wu, E. J. Pone, J. Zhang, T. Mai, L. M. Thomas, A. Al-Qahtani, C. A. White, S. R. Park, P. Steinacker, Z. Li, J. 3rd. Yates, B. Herron, M. Otto, H. Zan, H. Fu, and P. Casali. 2010. 14-3-3 adaptor proteins recruit AID to 5'-AGCT-3'-rich switch regions for class switch recombination. Nat. Struct. Mol. Biol. 17: 1124-1135.   DOI
68 Chaudhuri, J. and F. W. Alt. 2004. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4: 541-552.   DOI
69 Di Noia, J. M. and M. S. Neuberger. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76: 1-22.   DOI
70 Peled, J. U., F. L. Kuang, M. D. Iglesias-Ussel, S. Roa, S. L. Kalis, M. F. Goodman, and M. D. Scharff. 2008. The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 26: 481-511.   DOI
71 Arakawa, H., J. Hauschild, and J. M. Buerstedde. 2002. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295: 1301-1306.   DOI
72 Harris, R. S., J. E. Sale, S. K. Petersen-Mahrt, and M. S. Neuberger. 2002. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12:435-438.   DOI
73 Muramatsu, M., K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, and T. Honjo. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553-563.   DOI
74 Revy, P., T. Muto, Y. Levy, F. Geissmann, A. Plebani, O. Sanal, N. Catalan, M. Forveille, R. Dufourcq-Labelouse, A. Gennery, I. Tezcan, F. Ersoy, H. Kayserili, A. G. Ugazio, N. Brousse, M. Muramatsu, L. D. Notarangelo, K. Kinoshita, T. Honjo, A. Fischer, and A. Durandy. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102: 565-575.   DOI
75 Mechtcheriakova, D., M. Svoboda, A. Meshcheryakova, and E. Jensen-Jarolim. 2012. Activation-induced cytidine deaminase (AID) linking immunity, chronic inflammation, and cancer. Cancer Immunol. Immunother. 61: 1591-1598.   DOI
76 Muramatsu, M., V. S. Sankaranand, S. Anant, M. Sugai, K. Kinoshita, N. O. Davidson, and T. Honjo. 1999. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274: 18470-18476.   DOI
77 Jung, S., K. Rajewsky, and A. Radbruch. 1993. Shutdown of class switch recombination by deletion of a switch region control element. Science 259: 984-987.   DOI
78 Okazaki, I. M., K. Kinoshita, M. Muramatsu, K. Yoshikawa, and T. Honjo. 2002. The AID enzyme induces class switch recombination in fibroblasts. Nature 416: 340-345.   DOI
79 Yoshikawa, K., I. M. Okazaki, T. Eto, K. Kinoshita, M. Muramatsu, H. Nagaoka, and T. Honjo. 2002. AID enzyme- induced hypermutation in an actively transcribed gene in fibroblasts. Science 296: 2033-2036.   DOI
80 Stavnezer, J. 2000. Molecular processes that regulate class switching. Curr. Top. Microbiol. Immunol. 245: 127-168.
81 Petersen-Mahrt, S. K., R. S. Harris, and M. S. Neuberger. 2002. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418: 99-103.
82 Bransteitter, R., P. Pham, M. D. Scharff, and M. F. Goodman. 2003. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. U.S.A. 100:4102-4107.   DOI
83 Chaudhuri, J., M. Tian, C. Khuong, K. Chua, E. Pinaud, and F. W. Alt. 2003. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422: 726-730.   DOI
84 Dickerson, S. K., E. Market, E. Besmer, and F. N. Papavasiliou. 2003. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197: 1291-1296.   DOI
85 Pham, P., R. Bransteitter, J. Petruska, and M. F. Goodman. 2003. Processive AID-catalysed cytosine deamination on single- stranded DNA simulates somatic hypermutation. Nature 424: 103-107.   DOI
86 Ramiro, A. R., P. Stavropoulos, M. Jankovic, and M. C. Nussenzweig. 2003. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4: 452-456.   DOI
87 Sohail, A., J. Klapacz, M. Samaranayake, A. Ullah, and A. S. Bhagwat. 2003. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res. 31: 2990-2994.   DOI
88 Stavnezer, J. 2011. Complex regulation and function of activation- induced cytidine deaminase. Trends Immunol. 32: 194-201.   DOI
89 Neuberger, M. S., J. M. Di Noia, R. C. Beale, G. T. Williams, Z. Yang, and C. Rada. 2005. Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation. Nat. Rev. Immunol. 5: 171-178.   DOI
90 Guikema, J. E., E. K. Linehan, D. Tsuchimoto, Y. Nakabeppu, P. R. Strauss, J. Stavnezer, and C. E. Schrader. 2007. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J. Exp. Med. 204: 3017-3026.   DOI
91 Pavri, R. and M. C. Nussenzweig. 2011. AID targeting in antibody diversity. Adv. Immunol. 110: 1-26.
92 Arakawa, H. and J. M. Buerstedde. 2009. Activation-induced cytidine deaminase-mediated hypermutation in the DT40cell line. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364: 639-644.   DOI
93 Kuraoka, M., T. M. Holl, D. Liao, M. Womble, D. W. Cain, A. E. Reynolds, and G. Kelsoe. 2011. Activation-induced cytidine deaminase mediates central tolerance in B cells. Proc. Natl. Acad. Sci. U.S.A. 108: 11560-11565.   DOI
94 Meyers, G., Y. S. Ng, J. M. Bannock, A. Lavoie, J. E. Walter, L. D. Notarangelo, S. S. Kilic, G. Aksu, M. Debré, F. Rieux-Laucat, M. E. Conley, C. Cunningham-Rundles, A. Durandy, and E. Meffre. 2011. Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc. Natl. Acad. Sci. U.S.A. 108: 11554-11559.   DOI
95 Kuraoka, M. and G. Kelsoe. 2011. A novel role for activation- induced cytidine deaminase: central B-cell tolerance. Cell Cycle 10: 3423-3424.   DOI
96 Péron, S., B. Laffleur, N. Denis-Lagache, J. Cook-Moreau, A. Tinguely, L. Delpy, Y. Denizot, E. Pinaud, and M. Cogne. 2012. AID-driven deletion causes immunoglobulin heavy chain locus suicide recombination in B cells. Science 336: 931-934.   DOI
97 Nagaoka, H., T. H. Tran, M. Kobayashi, M. Aida, and T. Honjo. 2010. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity. Int. Immunol. 22: 227-235.   DOI
98 Zan, H. and P. Casali. 2012. Regulation of Aicda expression and AID activity. Autoimmunity doi:10.3109/08916934.2012. 749244.
99 Pone, E. J., J. Zhang, T. Mai, C. A. White, G. Li, J. K. Sakakura, P. J. Patel, A. Al-Qahtani, H. Zan, Z. Xu, and P. Casali. 2012. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-$\kappa B$ pathway. Nat. Commun. 3: 767.   DOI
100 Xu, Z., H. Zan, E. J. Pone, T. Mai, and P. Casali. 2012. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 12: 517-531.   DOI
101 Kim, R. J., H. A. Kim, J. B. Park, S. R. Park, S. H. Jeon, G. Y. Seo, D. W. Seo, S. R. Seo, G. T. Chun, N. S. Kim, S. W. Yie, W. H. Byeon, and P. H. Kim. 2007. IL-4-induced AID expression and its relevance to IgA class switch recombination. Biochem. Biophys. Res. Commun. 361: 398-403.   DOI
102 Kim, H. A., G. Y. Seo, and P. H. Kim. 2011. Macrophage- derived BAFF induces AID expression through the p38MAPK/CREB and JNK/AP-1 pathways. J. Leukoc. Biol. 89: 393-398.   DOI
103 Park, S. R., H. Zan, Z. Pal, J. Zhang, A. Al-Qahtani, E. J. Pone, Z. Xu, T. Mai, and P. Casali. 2009. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat. Immunol. 10: 540-550.   DOI
104 Park, S. R., P. H. Kim, K. S. Lee, S. H. Lee, G. Y. Seo, Y. C. Yoo, J. Lee, and P. Casali. 2012. APRIL stimulates NF-$\kappa B$-mediated HoxC4 induction for AID expression in mouse B cells. Cytokine doi:10.1016/j.cyto.2012.10.018.
105 Seidl, T., T. Whittall, K. Babaahmady, and T. Lehner. 2012. B-cell agonists up-regulate AID and APOBEC3G deaminases, which induce IgA and IgG class antibodies and anti-viral function. Immunology 135: 207-215.   DOI
106 Lee, M. R., G. Y. Seo, Y. M. Kim, and P. H. Kim. 2011. iNOS potentiates mouse Ig isotype switching through AID expression. Biochem. Biophys. Res. Commun. 410: 602-607.   DOI
107 Hauser, J., N. Sveshnikova, A. Wallenius, S. Baradaran, J. Saarikettu, and T. Grundström. 2008. B-cell receptor activation inhibits AID expression through calmodulin inhibition of E-proteins. Proc. Natl. Acad. Sci. U.S.A. 105: 1267-1272.   DOI   ScienceOn
108 Gonda, H., M. Sugai, Y. Nambu, T. Katakai, Y. Agata, K. J. Mori, Y. Yokota, and A. Shimizu. 2003. The balance between Pax5 and Id2 activities is the key to AID gene expression. J. Exp. Med. 198: 1427-1437.   DOI
109 Pauklin, S. and S. K. Petersen-Mahrt. 2009. Progesterone inhibits activation-induced deaminase by bindingto the promoter. J. Immunol. 183: 1238-1244.   DOI   ScienceOn
110 Sayegh, C. E., M. W. Quong, Y. Agata, and C. Murre. 2003. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat. Immunol. 4: 586-593.   DOI   ScienceOn
111 Lee, C. H., M. Melchers, H. Wang, T. A. Torrey, R. Slota, C. F. Qi, J. Y. Kim, P. Lugar, H. J. Kong, L. Farrington, B. van der Zouwen, J. X. Zhou, V. Lougaris, P. E. Lipsky, A. C. Grammer, and H. C. 3rd Morse. 2006. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J. Exp. Med. 203: 63-72.   DOI
112 Yadav, A., A. Olaru, M. Saltis, A. Setren, J. Cerny, and F. Livák. 2006. Identification of a ubiquitously active promoter of the murine activation-induced cytidine deaminase (AICDA) gene. Mol. Immunol. 43: 529-541.   DOI
113 Tran, T. H., M. Nakata, K. Suzuki, N. A. Begum, R. Shinkura, S. Fagarasan, T. Honjo, and H. Nagaoka. 2010. B cell-specificand stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nat. Immunol. 11: 148-154.   DOI
114 Pauklin, S., I. V. Sernández, G. Bachmann, A. R. Ramiro, and S. K. Petersen-Mahrt. 2009. Estrogen directly activates AID transcription and function. J. Exp. Med. 206: 99-111.   DOI
115 Mai, T., H. Zan, J. Zhang, J. S. Hawkins, Z. Xu, and P. Casali. 2010. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation- induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation. J. Biol. Chem. 285: 37797-37810.   DOI
116 Lee, H., J. S. Trott, S. Haque, S. McCormick, N. Chiorazzi,and P. K. Mongini. 2010. A cyclooxygenase-2/prostaglandin E2 pathway augments activation-induced cytosine deaminase expression within replicating human B cells. J. Immunol. 185: 5300-5314.   DOI
117 Ise, W., M. Kohyama, B. U. Schraml, T. Zhang, B. Schwer, U. Basu, F. W. Alt, J. Tang, E. M. Oltz, T. L. Murphy, and K. M. Murphy. 2011. Nat. Immunol. 12: 536-543.   DOI