• Title/Summary/Keyword: System structure design

Search Result 6,176, Processing Time 0.034 seconds

Development of Doubler Plate Design System for Ship Structure Subjected to In-plane Combined Loads and Lateral Pressure (면내조합하중과 횡압 하의 선박 이중판 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.146-152
    • /
    • 2019
  • A design system was developed for the doubler plate of a ship structure simultaneously subjected to in-plane loads and lateral pressure based on general dimensions and those of a representative ship structure. An equivalent design equation that considers various structural design parameters was derived by introducing the equivalent plate thickness theory, and the design of the doubler plate reinforcement of the ship structure was developed. A hybrid structural design system was established for a doubler plate simultaneously subjected to in-plane loads and lateral pressure consisting of two modules: an optimized design module and a double plate strength & design review module. The practical application of this design system was illustrated to show its usability. It was found that the design safety of the doubler plate was ensured, and this system could be used as an initial design guide to review the double plate reinforcement for a dent or corrosion of the ship plate members. Using the developed design system would make it possible to obtain a more reasonable doubler plate structure that considers the rational reinforcement of plate members of ship structures. In addition, a more reliable structural analysis using a strength evaluation process can be performed to verify the efficiency of the optimum structural design for the doubler plate structure.

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

Structure-Control Combined Optimal Design with S/A Collocation (센서/엑츄에이터 배치를 고려한 구조-제어 통합최적설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.69-74
    • /
    • 2004
  • A structure-control combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

  • PDF

Development of the Design System for the Lifting Lug Structure (탑재용 러그 구조의 설계 시스템 개발)

  • 함주혁
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.189-194
    • /
    • 2000
  • Due to the rapid growth of ship building industry and increment of ship construction in Korea, several hundred thousand of lifting lugs per year, have been installed at the lifting positions of ship block and removed after finishing their function, therefore, appropriate design system for strength check or optimal design of each lug structure has been required in order to increase the capability of efficient design. In this study, design system of D-type lifting lug structure which is most popular and useful in shipyards, was developed for the purpose of initial design of lug structure. Developed system layout and graphic user interface for this design system based on the C++ language were explained step by step. Using this design system, more efficient performance of lug structural design will be expected on the windows of personal computer.

  • PDF

Parametric design for mechanical structure using knowledge-based system (역학적 구조에 대한 Knowledge-based 시스템을 이용한 파라메트릭 설계)

  • 이창호;김병인;정무영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1018-1023
    • /
    • 1993
  • In mechanical structure design area, many FEM (Finite Element Method) packages are used. But the design using FEM packages depends on an iterative trial and error manner and general CAD systems cannot cope with the change of parameters. This paper presents a methodology for building a designing system of a mechanical structure. This system can generate the drawing for a designed structure automatically. It consists of three steps: generation of a structure by selection of the parameters, stress analysis, and generation of a drawing using CAD system. FEM module and parametric CAD module are developed for this system. Inference engine module generates the parameters with a rule base and a model base, and also evaluates the current structure. The parametric design module generates geometric shapes automatically with given dimension. Parametric design is implemented with the artificial intelligent technique. In older to the demonstrate the effectiveness of the developed system, a frame set of bicycle was designed. The system was implemented on an SUN workstation using C language under OpenWindows environment.

  • PDF

Development of Integrated Design System for Structural Design of Machine Tools (공작기계 구조물 설계를 위한 통합설계 시스템 개발)

  • 박면웅;손영태;조성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.229-239
    • /
    • 2003
  • The design process of machine tools is regarded as a sequential, discrete, and inefficient works as it requires various kinds of design tools and many working hours. This paper describes an integrated design system embedding a design methodology that can support efficiently and systematically the conceptual structural design of machine tools. The system is a knowledge-based design system and has four machine-tool-specific functional modules including configuration design, configuration analysis, structure design, and structural analysis support module. Through the configuration design and analysis module, a machine configuration appropriate for design requirements is selected, and then the arrangement of ribs fer each structural part is decided in the structure design module. Also, the structural analysis support module is used to evaluate design result by utilizing structural analysis software, ANSYS. The system is applied to design of a tapping machine, and shows that the machine structure can be designed fast and conveniently by processing each design step interactively.

Development of the Aircraft Materials Selector Expert System

  • Lim, Kang-Hee;Guan, Zhi-Dong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.302-305
    • /
    • 2005
  • To comply to demand for a development requirement of aircraft design part, the expert system builds up standard knowledge-base based on presently maintained expert knowledge and experience in aircraft structure material selection. It also builds up database based on aircraft design open data, and standard calculation module used for present design and analysis method. This system is developed using Visual Basic language. The expert system standardize aircraft structure material selection and can be applied to all type of elementary stage of aircraft structure design. It is working on Windows, which has a friendly interface and is convenient for debugging, maintenance and transplanting. Explanation of the structure and the function of the system was given in this paper.

  • PDF

Rapid Design Method and System Development for Aircraft Wing Structure

  • Tang, Jiapeng;Han, Jing;Luo, Mingqiang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This work is mainly done by too many manual operations in the aircraft structure design process resulting in heavy workload, low efficiency and quality, non-standardized processes and procedures. A top-down associated design method employing the template parametric technology is proposed here in order to improve the quality of design and efficiency of aircraft wing structure at the preliminary design stage. The appropriate parametric tool is chosen and the rapid design system of knowledge-driven aircraft wing structure is developed. First, a skeleton model of aircraft wing structure is rapidly built up through the template encapsulated design knowledge. Associated design is then introduced to realize the association between the typical structural part and skeleton model. Finally, the related elements are referenced from skeleton model, and a typical structural part reflecting an automatic response for design changes of the upstream skeleton model is quickly constructed within the template. The rapid design system proposed and developed in this paper is able to formalize the design standardization of aircraft wing structure and thus the rapid generation of different aircraft wing structure programs and achieve the structural design knowledge reuse as well.

Design Shear Force Reduction Factor of Upper Structure in Seismic Base-isolated System Considering Response Acceleration Decrement Effect (면진구조의 응답가속도 감소효과를 고려한 상부구조의 설계전단력 저감계수)

  • Chen, Hao;Oh, Sang-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.165-170
    • /
    • 2019
  • The structural damage caused by earthquake to the upper structure of seismic base-isolated system can be suppressed effectively because it is designed to concentrate the input energy on the seismic isolation floor. Further, the response acceleration of seismic base-isolated system can be greatly reduced compared to the seismic structure because of the long period, which means that the design shear force of the seismic base-isolated system can be reduced appropriately. However, when the design shear force is determined to be reduced, the design stiffness will decrease, and the response acceleration will increase oppositely. Therefore, for finding the extent to which the design shear force of the upper structure can be reduced, this paper considered the seismic base-isolated structure as the analytical model and proposed the design shear force reduction factor of the base-isolated structure through the dynamic response analysis, while considering the decrement effect of response acceleration. The research result shows that the response acceleration of the isolated the upper structure can be reduced by 50%~70% of the seismic structure under the same design conditions, and the design shear force can be reduced by up to 40%. By increasing the design stiffness over to 1.8 times of the original design value, the design shear force can be reduced to the same extent as the response acceleration can be reduced compared to the seismic structure.

Stabilizing variable structure controller design of helicopter (헬리콥터 자세안정 가변구조제어기 설계)

  • 소일영;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1504-1508
    • /
    • 1996
  • In this paper, we derive dynamic equation of helicopter and design controller based on variable structure system. It is difficult to control helicopter because it has non-linear coupling between input and output of system and is MIMO system. The design of control law is considered here using variable structure methodology giving the robustness to parameter variations and invariance to some subsets of external disturbance. However we derive dynamic equations of helicopter and design stabilizing variable structure controller. Also, simulation results are given in this paper.

  • PDF