• Title/Summary/Keyword: System reliability

Search Result 9,274, Processing Time 0.036 seconds

Development of a Method for Reliability Evaluation of Transmission System under the Deregulated Electricity Market (규제완화된 전력시장 하에서의 송전계통 신뢰도 평가방법의 개발)

  • Cha, Jun-Min;Kim, Hong-Sik;Choi, Jae-Seok;Oh, Kwang-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.397-399
    • /
    • 2000
  • This paper presents a method for assessing reliability indices of transmission system. Because successful operation of electric power under the deregulated electricity market depends on transmission system reliability management, quantity evaluation of transmission system reliability is very important. The key point idea is based on that the reliability level of transmission system is equal to reliability level difference of between composite power system(HLII) and generation system(HLI). It is sure that risk indices of reliability of composite power system are larger than those of generation system. It is the reason that composite power system includes uncertainties and capacity limit of transmission lines. The characteristics and effectiveness of this methodology are illustrated by the case study using MRBTS.

  • PDF

Using System Reliability to Evaluate and Maintain Structural Systems

  • Estes, Allen C.;Frangopol, Dan M.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 2001
  • A reliability approach to evaluate structural performance has gained increased acceptability and usage over the past two decades. Most reliability analyses are based on the reliability of an individual component without examining the entire structural system. These analyses often result in either unnecessary repairs or unsafe structures. This study uses examples of series, parallel, and series-parallel models of structural systems to illustrate how the component reliabilities affect the reliability of the entire system. The component-system reliability interaction can be used to develop optimum lifetime inspection and repair strategies for structural systems. These examples demonstrate that such strategies must be based on the reliability of the entire structural system. They also demonstrate that the location of an individual component in the system has a profound effect on the acceptable reliability of that component. Furthermore, when a structure is deteriorating over time, the reliability importance of various components is a1so changing with time. For this reason, the most critical component in the early life of the structure may not tie the most critical later.

  • PDF

Reliability Allocation Model for KTX-II High Speed Train (KTX-II 고속 차량을 위한 신뢰도 할당 모델)

  • Lee, Kang-Won;Chung, In-Soo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.45-57
    • /
    • 2007
  • During the design phase of a system, which requires high reliability and safety such as aircraft, high speed train and nuclear power plant, reliability engineer must set up the target system reliability. To meet a reliability goal for the system, reliability allocation should be done gradually from the system to its element. For this end, first of all, we need to construct functional block diagram based on the design output and PWBS(Project Work Breakdown System). Another important input data for reliability allocation is the relationship between the cost and the reliability. In this study we investigate various reliability allocation models, which can be applicable to aircraft, vehicle, and power plant, and etc. And we suggest a proper reliability allocation model which can be effectively applicable to KTX-II high speed train to achieve the target system reliability.

  • PDF

Joint reliability importance of series-parallel systems

  • Dewan, I.;Jain, K.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.103-116
    • /
    • 2011
  • A series-parallel system with independent but non-identical components is considered. The expressions have been derived for the joint reliability importance (JRI) of m (${\geq}2$) components, chosen from a series-parallel system. JRIs of components of two different series-parallel systems are studied analytically and graphically.

  • PDF

System and member reliability of steel frames

  • Zhou, W.;Hong, H.P.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.419-435
    • /
    • 2004
  • The safety level of a structural system designed per code specifications can not be inferred directly from the reliability of members due to the load redistribution and nonlinear inelastic structural behavior. Comparison of the system and member reliability, which is scarce in the literature, is likely to indicate any possible inconsistency of design codes in providing safe and economical designs. Such a comparative study is presented in this study for moment resisting two-dimensional steel frames designed per AISC LRFD Specifications. The member reliability is evaluated using the resistance of the beam-column element and the elastic load effects that indirectly accounts for the second-order effects. The system reliability analysis is evaluated based on the collapse load factor obtained from a second-order inelastic analysis. Comparison of the system and member reliability is presented for several steel frames. Results suggest that the failure probability of the system is about one order of magnitude lower than that of the most critically loaded structural member, and that the difference between the system and member reliability depends on the structural configuration, degree of redundancy, and dead to live load ratio. Results also suggest that the system reliability is less sensitive to initial imperfections of the structure than the member reliability. Therefore, the system aspect should be incorporated in future design codes in order to achieve more reliability consistent designs.

FORM-based Structural Reliability Analysis of Dynamical Active Control System (동적능동제어시스템의 FORM기반 구조신뢰성해석)

  • Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.74-80
    • /
    • 2013
  • This study describes structural reliability analysis of actively-controlled structure for which random vibration analysis is incorporated into the first-order reliability method (FORM) framework. The existing approaches perform the reliability analysis based on the RMS response, whereas the proposed study uses the peak response for the reliability analysis. Therefore, the proposed approach provides us a meaningful performance measure of the active control system, i.e., realistic failure probability. In addition, it can deal with the uncertainties in the system parameters as well as the excitations in single-loop reliability analysis, whereas the conventional random vibration analysis requires double-loop reliability analysis; one is for the system parameters and the other is for stochastic excitations. The effectiveness of the proposed approach is demonstrated through a numerical example where the proposed approach shows fast and accurate reliability (or inversely failure probability) assessment results of the dynamical active control system against random seismic excitations in the presence of parametric uncertainties of the dynamical structural system.

Assessment of System Reliability and Capacity-Rating of Concrete Box-Girder High-Girder Highway Bridges (R.C 박스거더교의 체계신뢰성해석 및 안전도평가)

  • 조효남;이승재;임종권
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.195-200
    • /
    • 1993
  • This paper develops practical and realistic reliability models and methods for the evalusion of system reliability and system reliability-based rating of R.C box-girder bridge superstructures. The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult expecially when the bridges are highly redundant and significantly deteriorated or damaged. This paper proposes a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. The strength limit state models for R.C box-girder bridges suggested in the paper are based on the basic bending and shear strength. and the system reliability problem of box-girder superstructure is formulated as parallel-series models obtained from the FMA(Failure Mode Approach) based on major failure mechanism or critical failure states of each girder. AFOSM and IST(Importance Sampling Technique) simulation algorithm is used for the reliability analysis of the proposed models.

  • PDF

RELSYS: A computer program for structural system reliability

  • Estes, Allen C.;Frangopol, Dan M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.901-919
    • /
    • 1998
  • Most reliability-based analyses focus on the reliability of the individual components of a structure. There are many advantages to examining the components in combination as an entire structural system. This paper illustrates an algorithm used in the computer program RELSYS (RELiability of SYStems) which computes the system reliability of any structure which can be modeled as a series-parallel combination of its components. A first-order method is used to initially compute the reliability of each individual component. The system reliability is computed by successively reducing the series and parallel systems until the system has been simplified to a single equivalent component. Equivalent alpha vectors are used to account for the correlation between failure modes during the system reduction process.

Studies on a standby repairable system with two types of failure

  • El-Damcese, M.A.;Shama, M.S.
    • International Journal of Reliability and Applications
    • /
    • v.16 no.2
    • /
    • pp.99-111
    • /
    • 2015
  • In this paper, we study the reliability analysis of a repairable system with two types of failure in which switching failures and reboot delay are considered. Let units in this system be cold standby, and failure rate and repair rate of [type1, type2] components be exponentially distributed. The expressions of reliability characteristics - such as the system reliability and the mean time to system failure MTTF - are derived. We use several cases to graphically analyze the effect of various system parameters on the system reliability and MTTF. We also perform a sensitivity analysis of the reliability characteristics with changes in specific values of the system's parameters.

Study on a System Reliability Calculation Method Using Failure Enumeration of Reliability Path (신뢰도 경로의 고장열거를 이용한 시스템 신뢰도 계산방법 연구)

  • Lee, Jang-Il;Park, Kee-Jun;Chun, Hwan-Kyu;Jeong, Choong-Min;Shin, Dong-Jun;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.629-633
    • /
    • 2011
  • Recently, systems such as aircraft, trains and ships have become larger more complex. Therefore, the reliability calculation of these systems is more difficult. This paper presents a reliability calculation algorithm for a complex system with a solution that is difficult to analyze. When the system has a very complex structure, it is very difficult to find an analytical solution. In this case, we can assess system reliability using the failure enumeration method of the reliability path. In this research, we represent the reliability block diagram by an adjacent matrix and define the reliability path. We can find any system status by the failure enumeration of the reliability path, and thus we can calculate any kind of system reliability through this process. This result can be applied to RCM (Reliability-Centered Maintenance) and reliability information-management systems, in which the system reliability is composed of the reliabilities of individual parts.