• Title/Summary/Keyword: System operating strategies

Search Result 230, Processing Time 0.033 seconds

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

Performance Analysis of Sensor Systems for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Jo, Jung Hyun;Park, Jang-Hyun;Chung, Taejin;Park, Jaewoo;Jeon, Hocheol;Yun, Ami;Lee, Yonghui
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.303-314
    • /
    • 2017
  • With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a $1-m^2$ radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.

The Analysis of Elementary School Teacher Cognition on KAIE Computing System Curriculum (KAIE 컴퓨팅시스템 교육과정에 대한 초등교사 인식 분석)

  • Sung, Younghoon;Park, Namje
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.1
    • /
    • pp.131-140
    • /
    • 2018
  • The KAIE computing system curriculum consists of information equipment, operating systems, and information and communication fields, and covers basic understanding and principles of computer science. The role of the teacher is important to achieve the curriculum achievement standards. Therefore, we examined the factors affecting the teaching capacity of the KAIE computing system curriculum. The results of this study show that the teaching methods of teachers through the literacy of information and communication technology have a statistically significant effect on the teaching competency of the computing system curriculum. Also, male teachers perceived higher perceived factors than female teachers. The differences in teaching competency between teacher groups of less than 5 years and less than 5~10 years were significant. Based on these results, it is necessary to develop collaborate SW teaching strategies and mentor - centered training programs that can strengthen ICT and SW professors' competence and encourage participation of low - career teachers and female teachers.

The Effect of Switching Costs on user Resistance in the Adoption of Open Source Software (오픈소스 소프트웨어 도입 시 전환비용이 사용자 저항에 미치는 영향)

  • Kim, Hee-Woong;Noh, Seung-Eui;Lee, Hyun-Lyung;Kwahk, Kee-Young
    • Information Systems Review
    • /
    • v.11 no.3
    • /
    • pp.125-146
    • /
    • 2009
  • The emergence of open source software(OSS) with its most prominent advantages creates a vast interest among practitioners. A study on Linux, the most well-known OSS, estimated that it would cost as 5.4 billion Euros taking over 73,000 person-years if it had been developed by conventional means. However, Linux has achieved only 0.65 percent of the operating system market for individual users while Microsoft windows family counts for nearly 90 percent of the market. Much of the effort being spent in the development of OSS is going to waste and potential value that OSS can bring to users is not being realized. Adoption of OSS is often accompanied by the discontinuance of existing software that is already in place. If users resist changing, they may not adopt OSS. Using the case of Linux, this study examines user resistance to change from the commercial operating software to the free operating system. This study identifies six sub-types of switching costs (uncertainty, emotional, setup, learning, lost benefit, and sunk costs) and tests their effects on user resistance to change based on a survey of 201 users. The results show that user resistance to change has a negative impact on the adoption of OSS. Further, this study shows that uncertainty and emotional costs have significant effects on user resistance to change. Beyond previous research on technology adoption, this research contributes towards an understanding of the switching costs leading to user resistance to change and offers suggestions to OSS practitioners for developing strategies to improve the adoption of OSS.

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study (가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

A Smooth LVRT Control Strategy for Single-Phase Two-Stage Grid-Connected PV Inverters

  • Xiao, Furong;Dong, Lei;Khahro, Shahnawaz Farhan;Huang, Xiaojiang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.806-818
    • /
    • 2015
  • Based on the inherent relationship between dc-bus voltage and grid feeding active power, two dc-bus voltage regulators with different references are adopted for a grid-connected PV inverter operating in both normal grid voltage mode and low grid voltage mode. In the proposed scheme, an additional dc-bus voltage regulator paralleled with maximum power point tracking controller is used to guarantee the reliability of the low voltage ride-through (LVRT) of the inverter. Unlike conventional LVRT strategies, the proposed strategy does not require detecting grid voltage sag fault in terms of realizing LVRT. Moreover, the developed method does not have switching operations. The proposed technique can also enhance the stability of a power system in case of varying environmental conditions during a low grid voltage period. The operation principle of the presented LVRT control strategy is presented in detail, together with the design guidelines for the key parameters. Finally, a 3 kW prototype is built to validate the feasibility of the proposed LVRT strategy.

A Study on Recognition and Improvement for the Evaluation of University Education on the Perspective of Industry (산업계관점 대학평가에 대한 인식 및 개선방안 연구)

  • Ko, Hyuk-Jin;Lee, Seok-Won;Han, Jiyoung
    • Journal of Engineering Education Research
    • /
    • v.20 no.5
    • /
    • pp.74-86
    • /
    • 2017
  • The purpose of this study is to analyze the perceptions of college officials about the evaluation of university education on the perspective of industry, to make policy proposals for improvement by analyzing the preparing process of the departments that have received the evaluation of the best universities, In order to achieve the purpose of the study, we conducted literature review, survey studies, and in-depth interviews. The survey was conducted by professors related to this system, and finally the results of 51 responses were used for analysis. The contents of the survey were composed of the recognition, appropriateness, the utilization of the results, the proliferation and improvement plan of the evaluation of university education on the perspective of industry. In-depth interviews conducted 1:1 interviews with 5 professors. The evaluation of university education on the perspective of industry is generally perceived to be a bridge between industry and university education, but there is room for improvement in evaluation criteria, operating methods, and promotion strategies to public.

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

Development of Weather Forecast Models for a Short-term Building Load Prediction (건물의 단기부하 예측을 위한 기상예측 모델 개발)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.

Scheduling Problem of Receiving and Shipping Trucks for Cross Docking Systems (크로스도킹시스템을 위한 하역과 선적 트럭의 일정계획)

  • Yu Woo yeon
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.79-93
    • /
    • 2002
  • Cross docking is a material handling and distribution concept in which products move directly from receiving dock to shipping dock, without being stored in a warehouse or distribution center. Depending on the facility and operating conditions or strategies employed, it is possible to generate various cross docking scenarios or models. The cross docking model, which is studied in this research, assumes there are a separate receiving dock and a separate shipping dock. It is also assumed that the products contained in a receiving truck and the products needed for a shipping truck are known in advance. Furthermore, the study is restricted to scenarios where there is only one receiving dock and only one shipping dock at the warehouse. The research objective is to find the best truck spotting sequence for both receiving and shipping trucks to minimize total operation time (i.e., the makespan) of the cross docking system.