• 제목/요약/키워드: System of differential equations

검색결과 759건 처리시간 0.025초

Block Cyclic Reduction 기법에 의한 대형 Sparse Matrix 선형 2계편미분방정식의 효율적인 병렬 해 알고리즘 (An efficient parallel solution algorithm on the linear second-order partial differential equations with large sparse matrix being based on the block cyclic reduction technique)

  • 이병홍;김정선
    • 한국통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.553-564
    • /
    • 1990
  • 선계2계 편미분 방정식의 일반식에 대한 계수 메트릭스를 (n-1)x(n-1) submatrices로 나누어서 block tridiagonal system으로 변환한 후 cyclic odd-even reduction 기법을 응용하여 large-grain data granularity로서 미지벡타를 구하는 block cyclic reduction 알고리즘을 작성했다. 그런데 이 block cyclic reduction 기법은 매 연산의 단계마다 병렬성이 변하여 병렬처리형 컴퓨터에는 적합하지 못하므로 이 기법을 변형해서 병렬성이 일정하며 실행시간이 보다 단축되는 block cyclic reduction 기법을 제안하고 이 기법에 의한 선형2계 편미분 방정식의 일반식의 解를 구하는 알고리즘을 작성하여 기존의 기법과 비교 고찰했다.

  • PDF

INVESTIGATION OF A NEW COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS IN FRAME OF HILFER-HADAMARD

  • Ali Abd Alaziz Najem Al-Sudani;Ibrahem Abdulrasool hammood Al-Nuh
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.501-515
    • /
    • 2024
  • The primary focus of this paper is to thoroughly examine and analyze a coupled system by a Hilfer-Hadamard-type fractional differential equation with coupled boundary conditions. To achieve this, we introduce an operator that possesses fixed points corresponding to the solutions of the problem, effectively transforming the given system into an equivalent fixed-point problem. The necessary conditions for the existence and uniqueness of solutions for the system are established using Banach's fixed point theorem and Schaefer's fixed point theorem. An illustrate example is presented to demonstrate the effectiveness of the developed controllability results.

Modeling and parameter estimation of a fish-drying control system

  • Sakai, Y.;Wada, K.;Nakamura, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.440-445
    • /
    • 1992
  • The major purpose here is to estimate the drying time required in the fish-drying process employed. The basic element of the prediction of the drying time is the model or the equation, which governs the change in weight. By an intuitive consideration on the mechanism of dehydration, a mathematical model of the fish-drying process is built, which is described by a system of linear differential equations. Further, a modified system of linear differential equations for a model of drying is also proposed for more accurate estimation. The parameter estimation of this system of equations provides the prediction of necessary drying time.

  • PDF

Vibration analysis of a Timoshenko beam carrying 3D tip mass by using differential transform method

  • Kati, Hilal Doganay;Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.381-388
    • /
    • 2018
  • Dynamic behaviour of beam carrying masses has attracted attention of many researchers and engineers. Many studies on the analytical solution of beam with concentric tip mass have been published. However, there are limited works on vibration analysis of beam with an eccentric three dimensional object. In this case, bending and torsional deformations of beam are coupled due to the boundary conditions. Analytical solution of equations of motion of the system is complicated and lengthy. Therefore, in this study, Differential Transform Method (DTM) is applied to solve the relevant equations. First, the Timoshenko beam with 3D tip attachment whose centre of gravity is not coincident with beam end point is considered. The beam is assumed to undergo bending in two orthogonal planes and torsional deformation about beam axis. Using Hamilton's principle the equations of motion of the system along with the possible boundary conditions are derived. Later DTM is applied to obtain natural frequencies and mode shapes of the system. According to the relevant literature DTM has not been applied to such a system so far. Moreover, the problem is modelled by Ansys, the well-known finite element method, and impact test is applied to extract experimental modal data. Comparing DTM results with finite element and experimental results it is concluded that the proposed approach produces accurate results.

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

Buckling and stability analysis of sandwich beams subjected to varying axial loads

  • Eltaher, Mohamed A.;Mohamed, Salwa A
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.241-260
    • /
    • 2020
  • This article presented a comprehensive model to study static buckling stability and associated mode-shapes of higher shear deformation theories of sandwich laminated composite beam under the compression of varying axial load function. Four higher order shear deformation beam theories are considered in formulation and analysis. So, the model can consider the influence of both thick and thin beams without needing to shear correction factor. The compression force can be described through axial direction by uniform constant, linear and parabolic distribution functions. The Hamilton's principle is exploited to derive equilibrium governing equations of unified sandwich laminated beams. The governing equilibrium differential equations are transformed to algebraic system of equations by using numerical differential quadrature method (DQM). The system of equations is solved as an eigenvalue problem to get critical buckling loads and their corresponding mode-shapes. The stability of DQM in determining of buckling loads of sandwich structure is performed. The validation studies are achieved and the obtained results are matched with those. Parametric studies are presented to figure out effects of in-plane load type, sandwich thickness, fiber orientation and boundary conditions on buckling loads and mode-shapes. The present model is important in designing process of aircraft, naval structural components, and naval structural when non-uniform in-plane compressive loading is dominated.

HOMOGENIZATION FOR FISSURED MEDIUM EQUATIONS

  • Pak, Hee Chul
    • 충청수학회지
    • /
    • 제21권1호
    • /
    • pp.71-78
    • /
    • 2008
  • We introduce the homogenized differential systems for fissured medium equations representing the small temperature variation or densities of a fluid in a system consisting of two components.

  • PDF

HYERS-ULAM STABILITY OF FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSE

  • Dumitru Baleanu;Banupriya Kandasamy;Ramkumar Kasinathan;Ravikumar Kasinathan;Varshini Sandrasekaran
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.967-982
    • /
    • 2023
  • The goal of this study is to derive a class of random impulsive non-local fractional stochastic differential equations with finite delay that are of Caputo-type. Through certain constraints, the existence of the mild solution of the aforementioned system are acquired by Kransnoselskii's fixed point theorem. Furthermore through Ito isometry and Gronwall's inequality, the Hyers-Ulam stability of the reckoned system is evaluated using Lipschitz condition.

On asymptotic Stability in nonlinear differential system

  • 안정향
    • 한국산업정보학회논문지
    • /
    • 제11권5호
    • /
    • pp.62-66
    • /
    • 2006
  • We investigate various $\Phi(t)-stability$ of comparison differential equations and we abtain necessary and/or sufficient conditions for the uniform asymptotic and exponential asymptotic stability of the nonlinear differential equation x'=f(t, x).

  • PDF

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.