Browse > Article
http://dx.doi.org/10.12989/scs.2020.34.2.241

Buckling and stability analysis of sandwich beams subjected to varying axial loads  

Eltaher, Mohamed A. (Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University)
Mohamed, Salwa A (Department of Engineering Mathematics, Faculty of Engineering, Zagazig University)
Publication Information
Steel and Composite Structures / v.34, no.2, 2020 , pp. 241-260 More about this Journal
Abstract
This article presented a comprehensive model to study static buckling stability and associated mode-shapes of higher shear deformation theories of sandwich laminated composite beam under the compression of varying axial load function. Four higher order shear deformation beam theories are considered in formulation and analysis. So, the model can consider the influence of both thick and thin beams without needing to shear correction factor. The compression force can be described through axial direction by uniform constant, linear and parabolic distribution functions. The Hamilton's principle is exploited to derive equilibrium governing equations of unified sandwich laminated beams. The governing equilibrium differential equations are transformed to algebraic system of equations by using numerical differential quadrature method (DQM). The system of equations is solved as an eigenvalue problem to get critical buckling loads and their corresponding mode-shapes. The stability of DQM in determining of buckling loads of sandwich structure is performed. The validation studies are achieved and the obtained results are matched with those. Parametric studies are presented to figure out effects of in-plane load type, sandwich thickness, fiber orientation and boundary conditions on buckling loads and mode-shapes. The present model is important in designing process of aircraft, naval structural components, and naval structural when non-uniform in-plane compressive loading is dominated.
Keywords
sandwich composite; buckling stability; mode-shapes; varying axial load; unified beam theories; Differential Quadrature Method (DQM); convergence of DQM;
Citations & Related Records
Times Cited By KSCI : 19  (Citation Analysis)
연도 인용수 순위
1 Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014b), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.   DOI
2 Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.   DOI
3 Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019b), "Periodic and nonperiodic modes on postbuckling and nonlinear vibration of beams attached with nonlinear foundations", Appl. Math. Model., 75, 414-445.   DOI
4 Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads" Steel Compos. Struct.
5 Eltaher, M.A., Mohamed, S.A. and Melaibari, M. (2020), "Static stability of a unified composite beams under varying axial loads", Thin-Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.   DOI
6 Emam, S.A. (2011), "Analysis of shear-deformable composite beams in postbuckling", Compos. Struct., 94(1), 24-30. https://doi.org/10.1016/j.compstruct.2011.07.024.   DOI
7 Emam, S. and Eltaher, M.A. (2016), "Buckling and postbuckling of composite beams in hygrothermal environments", Compos. Struct., 152, 665-675. https://doi.org/10.1016/j.compstruct.2016.05.029.   DOI
8 Emam, S., Eltaher, M., Khater, M. and Abdalla, W. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Scie., 8(11), 2238.   DOI
9 Garg, A. and Chalak, H.D. (2019), "A review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin-Wall. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.   DOI
10 Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.   DOI
11 Jun, L., Xiang, H. & Xiaobin, L. (2016), "Free vibration analyses of axially loaded laminated composite beams using a unified higher-order shear deformation theory and dynamic stiffness method", Compos. Struct., 158, 308-322. https://doi.org/10.1016/j.compstruct.2016.09.012.   DOI
12 Jun, L., Li, J. and Xiaobin, L. (2017), "A spectral element model for thermal effect on vibration and buckling of laminated beams based on trigonometric shear deformation theory", Int. J. Mech. Sci., 133, 100-111. https://doi.org/10.1016/j.ijmecsci.2017.07.059.   DOI
13 Kang, J.H. and Leissa, A.W. (2005), "Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges", Int. J. Solids Struct., 42(14), 4220-4238. https://doi.org/10.1016/j.ijsolstr.2004.12.011.   DOI
14 Karamanli, A. and Aydogdu, M. (2019), "Buckling of laminated composite and sandwich beams due to axially varying in-plane loads", Compos. Struct., 210, 391-408. https://doi.org/10.1016/j.compstruct.2018.11.067.   DOI
15 Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. Part B: Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.   DOI
16 Li, C., Shen, H.S. and Wang, H. (2019), "Nonlinear bending of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Compos. Struct., 212, 317-325.   DOI
17 Li, W., Ma, H. and Gao, W. (2019), "A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams", Compos. Struct., 221, 110830. https://doi.org/10.1016/j.compstruct.2019.04.002.   DOI
18 Meirovitch, L. (2010), Methods of analytical dynamics, Courier Corporation
19 MalekzadehFard, K., Gholami, M., Reshadi, F. and Livani, M. (2017), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", J. Sandw. Struct. Mater., 19(4), 397-423. https://doi.org/10.1177/1099636215603034.   DOI
20 Martins, A.D. and Silvestre, N. (2019), "Modal analysis of the post-buckling behaviour of cylindrical steel panels under compression: Imperfection sensitivity and local2 interaction", Thin-Wall. Struct., 144, 106345. https://doi.org/10.1016/j.tws.2019.106345.   DOI
21 Meyer-Piening, H. R. (2006), "Sandwich plates: Stresses, deflection, buckling and wrinkling loads-A case study", J. Sandw. Struct. Mater., 8(5), 381-394.   DOI
22 Mohamed, N., Eltaher, M. A., Mohamed, S.A. and Seddek, L.F. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Non-Linear Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014.   DOI
23 Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.   DOI
24 Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793.   DOI
25 Nasrekani, F.M. and Eipakchi, H. (2019), "Analytical solution for buckling analysis of cylinders with varying thickness subjected to combined axial and radial loads", Int. J. Pressure Vessels Piping, 172, 220-226. https://doi.org/10.1016/j.ijpvp.2019.03.036.   DOI
26 Panda, S.K. and Ramachandra, L.S. (2010), "Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads", Int. J. Mech. Sci., 52(6), 819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009.   DOI
27 Nguyen, T.K. and Nguyen, B.D. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237.   DOI
28 Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.   DOI
29 Osmani, A. and Meftah, S.A. (2018), "Lateral buckling of tapered thin walled bi-symmetric beams under combined axial and bending loads with shear deformations allowed", Eng. Struct., 165, 76-87. https://doi.org/10.1016/j.engstruct.2018.03.009.   DOI
30 Salami, S.J. and Dariushi, S. (2018), "Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation", Steel Compos. Struct., 27(3), 273-283. https://doi.org/10.12989/scs.2018.27.3.273.   DOI
31 Sayyad, A.S. and Ghugal, Y.M. (2017), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 9(1), 1750007. https://doi.org/10.1142/S1758825117500077.   DOI
32 Sayyad, A.S. and Ghugal, Y.M. (2019a), "A unified five-degree-of-freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636219840980.
33 Silvestre, N. and Camotim, D. (2002b), "Second-order generalised beam theory for arbitrary orthotropic materials", Thin-Wall. Struct., 40(9), 791-820. https://doi.org/10.1016/S0263-8231(02)00026-5.   DOI
34 Sayyad, A.S. and Ghugal, Y.M. (2019), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246. https://doi.org/10.1016/j.compstruct.2019.111246.   DOI
35 Shen, Q., Wang, J., Wang, Y. and Wang, F. (2019), "Analytical modelling and design of partially CFRP-wrapped thin-walled circular NCFST stub columns under axial compression", Thin-Wall. Struct., 144, 106276. https://doi.org/10.1016/j.tws.2019.106276.   DOI
36 Silvestre, N. and Camotim, D. (2002a), "First-order generalised beam theory for arbitrary orthotropic materials", Thin-Wall. Struct., 40(9), 755-789. https://doi.org/10.1016/S0263-8231(02)00025-3.   DOI
37 Silvestre, N. (2007), "Generalised beam theory to analyse the buckling behaviour of circular cylindrical shells and tubes", Thin-Wall. Struct., 45(2), 185-198. https://doi.org/10.1016/j.tws.2007.02.001.   DOI
38 Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017.   DOI
39 Singh, S.J. and Harsha, S.P. (2019), "Buckling analysis of FGM plates under uniform, linear and non-linear in-plane loading", J. Mech. Sci. Technol., 33(4), 1761-1767. https://doi.org/10.1007/s12206-019-0328-8.   DOI
40 Wang, W. and Shenoi, R.A. (2004), "Analytical solutions to predict flexural behavior of curved sandwich beams", J. Sandw. Struct. Mater., 6(3), 199-216. https://doi.org/10.1177/1099636204032855.   DOI
41 Akbas, S.D. (2019), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.   DOI
42 Abdalrahmaan, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.   DOI
43 Akbas, S.D. (2018a), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.   DOI
44 Akbas, S.D. (2018b), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.   DOI
45 Almitani, K.H., Abdalrahmaan, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.   DOI
46 Ascione, A. and Gherlone, M. (2018), "Nonlinear static response analysis of sandwich beams using the Refined Zigzag Theory", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636218795381.
47 Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of a viscoelastic composite plates under transient load", J. Mecha, Sci. Technol., 25(5), 1129. https://doi.org/10.1007/s12206-011-0302-6.   DOI
48 Chowdhury, S.R. and Reddy, J.N. (2019), "Geometrically exact micropolar Timoshenko beam and its application in modelling sandwich beams made of architected lattice core", Compos. Struct., 226, 111228. https://doi.org/10.1016/j.compstruct.2019.111228.   DOI
49 Basaglia, C., Camotim, D. and Silvestre, N. (2013), "Post-buckling analysis of thin-walled steel frames using generalised beam theory (GBT)", Thin-Wall. Struct., 62, 229-242. https://doi.org/10.1016/j.tws.2012.07.003.   DOI
50 Chen, Z., Li, J., Sun, L. and Li, L.Y. (2019), "Flexural buckling of sandwich beams with thermal-induced non-uniform sectional properties", J. Build.Eng., 25, 100782. https://doi.org/10.1016/j.jobe.2019.100782.   DOI
51 Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2019), "Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory", Thin-Wall. Struct., 140, 304-317. https://doi.org/10.1016/j.tws.2019.03.031.   DOI
52 Ebrahimi, F. and Farazmandnia, N. (2018), "Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams", Steel Compos. Struct., 27(2), 149-159. https://doi.org/10.12989/scs.2018.27.2.149.   DOI
53 Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.   DOI
54 Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013a), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.   DOI
55 Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013b), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.   DOI
56 Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014a), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.   DOI