• Title/Summary/Keyword: System of Linear Equations

Search Result 846, Processing Time 0.038 seconds

NUMERICAL METHODS FOR FUZZY SYSTEM OF LINEAR EQUATIONS WITH CRISP COEFFICIENTS

  • Jun, Younbae
    • The Pure and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • In this paper, numerical algorithms for solving a fuzzy system of linear equations with crisp coefficients are presented. We illustrate the efficiency and accuracy of the proposed methods by solving some numerical examples. We also provide a graphical representation of the fuzzy solutions in three-dimension as a visual reference of the solution of the fuzzy system.

ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR RECURSIVE FORMULA

  • KANG J. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.375-381
    • /
    • 2005
  • This paper presents linear algebraic equations in the form of recursive formula to compute elastokinematic characteristics of a suspension system. Conventional methods of elastokinematic analysis are based on nonlinear kinematic constrant equations and force equilibrium equations for constrained mechanical systems, which require complicated and time-consuming implicit computing methods to obtain the solution. The proposed linearized elastokinematic equations in the form of recursive formula are derived based on the assumption that the displacements of elastokinematic behavior of a constrained mechanical system under external forces are very small. The equations can be easily computerized in codes, and have the advantage of sharing the input data of existing general multi body dynamic analysis codes. The equations can be applied to any form of suspension once the type of kinematic joints and elastic components are identified. The validity of the method has been proved through the comparison of the results from established elastokinematic analysis software. Error estimation and analysis due to piecewise linear assumption are also discussed.

Non linear vibrations of stepped beam system under different boundary conditions

  • Ozkaya, E.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.333-345
    • /
    • 2007
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Forcing and damping terms were also included in the equations. The dimensionless equations were solved for six different set of boundary conditions. A perturbation method was applied to the equations of motions. The first terms of the perturbation series lead to the linear problem. Natural frequencies for the linear problem were calculated exactly for different boundary conditions. Second order non-linear terms of the perturbation series behave as corrections to the linear problem. Amplitude and phase modulation equations were obtained. Non-linear free and forced vibrations were investigated in detail. The effects of the position and magnitude of the step, as well as effects of different boundary conditions on the vibrations, were determined.

Development of Nonlinear Programming Approaches to Large Scale Linear Programming Problems (비선형계획법을 이용한 대규모 선형계획해법의 개발)

  • Chang, Soo-Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.131-142
    • /
    • 1991
  • The concept of criterion function is proposed as a framework for comparing the geometric and computational characteristics of various nonlinear programming approaches to linear programming such as the method of centers, Karmakar's algorithm and the gravitational method. Also, we discuss various computational issues involved in obtaining an efficient parallel implementation of these methods. Clearly, the most time consuming part in solving a linear programming problem is the direction finding procedure, where we obtain an improving direction. In most cases, finding an improving direction is equivalent to solving a simple optimization problem defined at the current feasible solution. Again, this simple optimization problem can be seen as a least squares problem, and the computational effort in solving the least squares problem is, in fact, same as the effort as in solving a system of linear equations. Hence, getting a solution to a system of linear equations fast is very important in solving a linear programming problem efficiently. For solving system of linear equations on parallel computing machines, an iterative method seems more adequate than direct methods. Therefore, we propose one possible strategy for getting an efficient parallel implementation of an iterative method for solving a system of equations and present the summary of computational experiment performed on transputer based parallel computing board installed on IBM PC.

  • PDF

USING CROOKED LINES FOR THE HIGHER ACCURACY IN SYSTEM OF INTEGRAL EQUATIONS

  • Hashemiparast, S.M.;Sabzevari, M.;Fallahgoul, H.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.145-159
    • /
    • 2011
  • The numerical solution to the linear and nonlinear and linear system of Fredholm and Volterra integral equations of the second kind are investigated. We have used crooked lines which includ the nodes specified by modified rationalized Haar functions. This method differs from using nominal Haar or Walsh wavelets. The accuracy of the solution is improved and the simplicity of the method of using nominal Haar functions is preserved. In this paper, the crooked lines with unknown coefficients under the specified conditions change the system of integral equations to a system of equations. By solving this system the unknowns are obtained and the crooked lines are determined. Finally, error analysis of the procedure are considered and this procedure is applied to the numerical examples, which illustrate the accuracy and simplicity of this method in comparison with the methods proposed by these authors.

A Two-Step Screening Algorithm to Solve Linear Error Equations for Blind Identification of Block Codes Based on Binary Galois Field

  • Liu, Qian;Zhang, Hao;Yu, Peidong;Wang, Gang;Qiu, Zhaoyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3458-3481
    • /
    • 2021
  • Existing methods for blind identification of linear block codes without a candidate set are mainly built on the Gauss elimination process. However, the fault tolerance will fall short when the intercepted bit error rate (BER) is too high. To address this issue, we apply the reverse algebra approach and propose a novel "two-step-screening" algorithm by solving the linear error equations on the binary Galois field, or GF(2). In the first step, a recursive matrix partition is implemented to solve the system linear error equations where the coefficient matrix is constructed by the full codewords which come from the intercepted noisy bitstream. This process is repeated to derive all those possible parity-checks. In the second step, a check matrix constructed by the intercepted codewords is applied to find the correct parity-checks out of all possible parity-checks solutions. This novel "two-step-screening" algorithm can be used in different codes like Hamming codes, BCH codes, LDPC codes, and quasi-cyclic LDPC codes. The simulation results have shown that it can highly improve the fault tolerance ability compared to the existing Gauss elimination process-based algorithms.

Analysis of Flow Field in Cavity Using Finite Analytic Method (F.A.M.을 이용한 공동 내부의 유동해석)

  • 박명규;정정환;김동진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.46-53
    • /
    • 1991
  • In the present study, Navier-Stokes equation is numerically solved by use of a Finite analytic method to obtain the 2-dimensional flow field in the square cavity. The basic idea of F.A.M. is the incorporation of local analytic solutions in the numerical solution of linear or non-linear partial differential equations. In the F.A.M., the total problem is subdivided into a number of all elements. The local analytic solution is obtained for the small element in which the governing equation, if non-linear, to be linearized. The local analytic solutions are then expressed in algebraic form and are overlapped to cover the entire region of the problem. The assembly of these local analytic solutions, which still preserve the overall nonlinearity of the governing equations, results in a system of linear algebraic equations. The system of algebraic equations is then solved to provide the numerical solutions of the total problem. The computed flow field shows the same characteristics to physical concept of flow phenomena.

  • PDF

Some aspects of load-rate sensitivity in visco-elastic microplane material model

  • Kozar, Ivica;Ozbolt, Josko
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • The paper describes localization of deformation in a bar under tensile loading. The material of the bar is considered as non-linear viscous elastic and the bar consists of two symmetric halves. It is assumed that the model represents behavior of the quasi-brittle viscous material under uniaxial tension with different loading rates. Besides that, the bar could represent uniaxial stress-strain law on a single plane of a microplane material model. Non-linear material property is taken from the microplane material model and it is coupled with the viscous damper producing non-linear Maxwell material model. Mathematically, the problem is described with a system of two partial differential equations with a non-linear algebraic constraint. In order to obtain solution, the system of differential algebraic equations is transformed into a system of three partial differential equations. System is subjected to loadings of different rate and it is shown that localization occurs only for high loading rates. Mathematically, in such a case two solutions are possible: one without the localization (unstable) and one with the localization (stable one). Furthermore, mass is added to the bar and in that case the problem is described with a system of four differential equations. It is demonstrated that for high enough loading rates, it is the added mass that dominates the response, in contrast to the viscous and elastic material parameters that dominated in the case without mass. This is demonstrated by several numerical examples.

A Study on the Teaching and Learning Method of Simultaneous Quadratic Equations Using GeoGebra (GeoGebra를 활용한 연립이차방정식 교수.학습 방안 연구)

  • Yang, Seong Hyun
    • East Asian mathematical journal
    • /
    • v.37 no.2
    • /
    • pp.265-288
    • /
    • 2021
  • In the 2015 revised mathematics curriculum, the system of equations is first introduced in 'Variables and Expressions' of [Middle School Grades 1-3]. Then, It is constructed that after learning the linear function in 'Functions', the relationship between the graphs of two linear functions and the systems of linear equations are learned so that students could improve the geometric representation of the systems of equations. However, in of Elective-Centered Curriculum Common Courses, Instruction is limited to algebraic manipulation when teaching and learning systems of quadratic equations. This paper presented the teaching and learning method that can improve students' mathematical connection through various representations by providing geometric representations in parallel using GeoGebra, a mathematics learning software, with algebraic solutions in the teaching and learning situation of simultaneous quadratic equations.

A Practical Privacy-Preserving Cooperative Computation Protocol without Oblivious Transfer for Linear Systems of Equations

  • Kang, Ju-Sung;Hong, Do-Won
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • We propose several practical SMC protocols for privacy-preserving cooperative scientific computations. We consider two important scientific computations which involve linear equations: the linear systems of equations problem and the linear least-square problem. The protocols proposed in this paper achieve acceptable security in the sense of Du-Zhan's paradigm and t-wise collusion-resistance, and their communication complexity is O(tm), where t is a security parameter and m is the total number of participants. The complexity of our protocol is significantly better than the previous result O($m^2/{\mu}$) of [4], in which the oblivious transfer protocol is used as an important building block.