• Title/Summary/Keyword: System modelling

Search Result 1,401, Processing Time 0.026 seconds

A modelling on Shunt Reactors in Railway Power Transmission System (철도고배 전송선로 분로리액터 설치에 대한 모델링)

  • Lee, Jongsoo;Lee, Jongwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1262-1268
    • /
    • 2015
  • I In power transmission systems, voltage changes continuously as reactive power is whether over supply or shortage. Reactive power produces in generators and consumes in transmission lines, and loads. Voltages at end points of transmission lines rise which is called Ferranti effect. Excessive voltage rising can reduce transmission equipment life, the voltage rising is usually permitted within the limit of 10%~30% excess. Shunt reactors are installed in transmission lines to put a curb on voltage rising. In this paper, we tried to do modelling for shunt reactor configuration types which are no grounding, grounded and grouded neutral reactor. Simulation are carried out for reactor magnitude for compensating transmission line capacitance.

MODELLING OF THE RISKS FACED BY INDIAN CONSTRUCTION COMPANIES ASSESSING INTERNATIONAL OPPORTUNITIES

  • M.N. Devaya;N.K. Jha
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.140-149
    • /
    • 2007
  • Indian construction companies have only 0.05% market share in the 3-4 trillion dollar global construction business and only two Indian construction companies figure in the ENR "Top 225 Global Contractors 2006" list. Hence, while enormous scope for growth exists, international construction experience is limited. This study explores the risks as perceived by Indian companies venturing abroad since risks in international construction differ from home market risks. Literature survey identified a number of risk factors that were evaluated by the experts, highlighting fourteen important risk factors. Interpretive Structural Modelling (ISM) was used to develop a hierarchical model showing the relationships between the different risk factors, thus helping to focus on the key risks for effective risk management. The study shows that poor project management is a key risk forming the hub of the system, while political instability has maximum influence. The results of the study can be used by managers to visualise the risks in perspective and prioritise the mitigation effort.

  • PDF

Load Modeling based on System Identification with Kalman Filtering of Electrical Energy Consumption of Residential Air-Conditioning

  • Patcharaprakiti, Nopporn;Tripak, Kasem;Saelao, Jeerawan
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • This paper is proposed mathematical load modelling based on system identification approach of energy consumption of residential air conditioning. Due to air conditioning is one of the significant equipment which consumes high energy and cause the peak load of power system especially in the summer time. The demand response is one of the solutions to decrease the load consumption and cutting peak load to avoid the reservation of power supply from power plant. In order to operate this solution, mathematical modelling of air conditioning which explains the behaviour is essential tool. The four type of linear model is selected for explanation the behaviour of this system. In order to obtain model, the experimental setup are performed by collecting input and output data every minute of 9,385 BTU/h air-conditioning split type with $25^{\circ}C$ thermostat setting of one sample house. The input data are composed of solar radiation ($W/m^2$) and ambient temperature ($^{\circ}C$). The output data are power and energy consumption of air conditioning. Both data are divided into two groups follow as training data and validation data for getting the exact model. The model is also verified with the other similar type of air condition by feed solar radiation and ambient temperature input data and compare the output energy consumption data. The best model in term of accuracy and model order is output error model with 70.78% accuracy and $17^{th}$ order. The model order reduction technique is used to reduce order of model to seven order for less complexity, then Kalman filtering technique is applied for remove white Gaussian noise for improve accuracy of model to be 72.66%. The obtained model can be also used for electrical load forecasting and designs the optimal size of renewable energy such photovoltaic system for supply the air conditioning.

A Study on Harmonics Analysis and Modelling for Distribution System (배전 시스템의 고조파 분석 및 모델링에 관한 연구)

  • Wang, Yong-Peel;Jeong, Jong-Won;Jeong, Dong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.62-68
    • /
    • 2007
  • The increasing use of power electronic equipment in distribution system has been the reason for the greater concern about a harmonic in recent time. Therefore, it is necessary for measurement and modelling to analyze a harmonic level and a transfer characteristic in distribution system. In this paper, the Point of Common Coupling (PCC) is selected to analyze harmonic characteristic of distribution system by IEC 61000-3-6. Harmonic voltage and orient were measured at the PCC of real distribution system Harmonic distribution, nonlinear load component and Total Harmonic Distortion(THD) were verified. The effective and accurate modelling of real distribution system were proved through a analysis of harmonic impedance, voltage and current under steady-state. Harmonic transfer characteristic were investigated through a analysis of harmonic voltage and current under harmonic current source.

Optimal Inter-Element Spacing of FD-MIMO Planar Array in Urban Macrocell with Elevation Channel Modelling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4759-4780
    • /
    • 2017
  • Full Dimension multiple input multiple output (FD-MIMO) architecture employs a planar array design at the Base Station (BS) to provide high order multi-user MIMO (MU-MIMO) via simultaneous data transmission to large number of users. With FD-MIMO, the BS can also adjust the beam direction in both elevation and azimuth direction to concentrate the energy on the user of interests while minimizing the interference leakage to co-scheduled users in the same cell or users in the neighboring cells. In a typical highly populated macrocell environment, modelling the elevation angular characteristics of three-dimensional (3D) channel is critical to understanding the performance limits of the FD-MIMO system. In this paper, we study the throughput performance of FD-MIMO system with varying elevation angular spread and inter-element spacing using a 3D spatial channel model. Our results show that for a typical urban scenario, horizontal beamforming with correlated antenna spacing achieves optimal performance but by restricting the spread of elevation angles of departure, elevation beamforming achieves high array gain with wide inter-element spacing. We also realize significant gains due to spatial array processing via modelling the elevation domain and varying the inter-element spacing for both the transmitter and receiver.

Survey on the Application of three dimensional product modeling in the army (군에서의 3차원 제품 모델 적용 방안 연구)

  • Choi, Ki-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5716-5720
    • /
    • 2012
  • To expand the use of three dimensional(3D) product modelling in the army, we have analyzed military technical data management system, as well as the military guidelines for the unique format and content of technical data package. Because traditional munition sector is based on the machinery and equipment industry, they have usually applied two dimensional(2D) drawings to prepare a design and to make a product. For that reason, there is no provision for 3D product modelling as a technical data package in the military guideline. In this study, we proposed an improvement scheme for the vitalization of 3D product modelling in the army not only in terms of related guideline but also military technical data management system.

Modelling and Accurate Tracking Control of a Transfer Crane (트랜스퍼 크레인의 모델링 및 고정도 주행제어에 관한 연구)

  • Choi, Moon-Seok;Kim, Young-Bok;Suh, Jin-Ho;Lee, Kwon-Soon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.485-488
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. In this paper, the system modelling and a tracking control approach are discussed based on two-degree-of-freedom (2DOF) servosystem design.

  • PDF

Modelling of System Air-Conditioner for Dynamic Simulation (동적시뮬레이션을 위한 시스템 멀티에어컨의 모델링)

  • Lee, Yoon-Jong;Kim, Chan-Jung;Moon, Je-Myung;Kim, Cheol-Woo;Seo, Hyeong-Joon;Kim, Gyoung-Rok;Shin, Haeng-Cho;Hong, Hi-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.328-333
    • /
    • 2007
  • The purpose of this study is modelling of system air-conditioner for TRNSYS. System air-conditioner is operated by a variable capacity compressor and accommodated by multiple evaporators. By reason of these feature, realizing performance of system air-conditioner for TRNSYS was incomplete. In this study performance data of system air-conditioner and control logics are used to make system air-conditioner module for TRNSYS. Performance data contains total capacity, power input and capacity index of system air-conditioner. The simulation was carried out in a mode of temperature level control using TRNSYS 16. The simulation shows that the system air-conditioner model operate variable capacity and can compute capacity index and power input of system.

  • PDF