• Title/Summary/Keyword: System modelling

Search Result 1,401, Processing Time 0.03 seconds

Uncertainty Quantification of Propulsion System on Early Stage of Design (추진체계 개념설계단계에서 불확실성 고려방법에 대한 연구)

  • Ahn, Joongki;Um, Ki-in;Lee, Ho-il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.258-265
    • /
    • 2017
  • At the early stage of the development of high speed propulsion systems, the designers suffer from the lack of both the quantity and the quality of test data. In that situation, the associated uncertainties could not be modeled as probabilistic distribution since probabilistic modelling requires large amount of data. In this paper, instead, the information provided by experts based on their experience and engineering knowledge was used to model uncertainty using the evidence theory. In designing the DCR(Dual Combustion Ramjet) engine, the combustion efficiencies, not well understood and little data existing, are assumed to have been provided by experts. And the uncertainties are quantified by Evidence theory. The quantified uncertainties are incorporated into the optimization. The design variables, area of inlet and area of combustor exit, have been found while satisfying reliability margins of thrust and thermal choking. The results show a reasonable design of the engine under the uncertain circumstances.

  • PDF

The 3D Modelling of Cultural Heritage Using Digital Photogrammetry (수치사진측량기법을 이용한 문화재의 3차원 모델링에 관한 연구)

  • 김진수;박운용;홍순헌
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.365-371
    • /
    • 2003
  • Digital high resolution cameras are widely available, and are increasingly use in digital close-range photogrammetry. And photogrammetry instruments are developing rapidly and the precision is improving continuously. The building of 3D terrains of high precision are possible and the calculation of the areas or the earthwork volumes have high precision due to the development of the techlique of the spatial information system using computer. Using the digital camera which has capacity of keeping numerical value by itself and easy carrying, we analyze the positioning error according to various change of photographing condition. Also we try to find a effective method of acquiring basis data for 3D monitoring of high-accuracy in pixel degree through digital close-range photogrammetry with bundle adjustment for local terrain model generation and 3D embodiment of tumulus. In the study is about to efficient analysis of digital information data fer conservation of cultural properties.

Impact of Non-point Source Runoff on Water Resource Quality according to Water-Level Changes (수위 변화에 따른 비점오염의 상수원 수질 영향 분석)

  • Choi, Mi-Jin;Lee, Sang-Hyeon
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1045-1053
    • /
    • 2015
  • This study evaluated the effect of water level of water resources on water quality in Ulsan. Two reservoirs, Sayeon Dam and Hoeya Dam, were selected and water quality of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were analyzed from 2012 to 2014. And the characteristics of precipitation were also analyzed for 70 years (1945~2014) because runoff of non-point pollutant was strongly affected by precipitation. As a result, water deterioration of Sayeon Dam and Hoeya Dam were affected in accordance with lowering water level. For example, the concentrations of COD and TN was negatively correlated with the water level when the water level of Sayeon Dam was gradually decreased in 2013. The TN concentration was increased to 1.432 mg/L from 0.875 mg/L while the lowest water level of Sayeon Dam was recorded 45 m in 2014. Additionally the concentration of COD and TN was sensitively increased with 0.213 mg/L/m and 0.058 mg/L/m on account of non-point pollutant runoff. It is indicated that hereafter a control of non-point pollutant runoff is the critical factors to maintain water resources because the contribution of non-point pollutant is expected to increase due to the frequent heavy rain events. Therefore, it is necessary to map out a specific plan for non-point pollutant control based on analyses of runoff characteristics, water pollution sources and reduction plans in water pollutants and to establish a water modelling and database system as a preventive action plan.

Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF

Enantiospecific separation in biphasic Membrane Reactors

  • Giorno, Lidietta
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.15-18
    • /
    • 1998
  • Membrane reactors are systems which combine a chemical reactor with a membrane separation process allowing to carry out simultaneously conversion and product separation. The catalyst can be immobilized on the membrane or simply compartmentalized in a reaction space by the membrane. Membrane reactors are today investigated to produce optically pure isomers and/or resolve racemic mixture of enantiomers. The interest towards these systems is due to the increasing demand of enantiomerically pure compounds to be used in the pharmaceutical, food, and agrochemical industries. In fact, enantiomers can have different biological activities, which often influence the efficacy or toxicity of the compound. On the basis of current literature there are basically two schemes on the use of membrane technology to produce enantiomers. In one case, the membrane itseft is intrinsically enantioselective: the membrane is the chiral system which selectively separates the wanted isomer on the basis of its conformation. In the other, a kinetic resolution using an enantiospecific biocatalyst is combined with a membrane separation process; the membrane separates the product from the substrate on the basis of their relative chemical properties (i.e. solubility). This kind of configuration is widely used to carry out kinetic resolutions of low water soluble substrams in biphasic membrane reactors [Giomo, 1995, 1997; Lopez, 1997]. These are systems where enzyme-loaded membranes promote reactions between two separate phases thanks to the properties of enzymes, such as lipases, to catalyse reactions at the org ic/aqueous interface; the two phases are maintained in contact and separated at the membrane level by operating at appropriate transmembrane pressure. A schematic representation of biphasic membrane reactor is shown in figure 1, while an example of enantiospecific reaction and product separation carried out with these systems is reported in figure 2.

  • PDF

Parameters Study of Linear Reservoir Models for Rainfall-Runoff Response (강우-유출에 대한 선형저수지 모형의 매개변수 연구)

  • Seo, Yeong-Je;Kim, Jin-Gyu;Park, Hyeon-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.711-720
    • /
    • 1999
  • In this study, a various rainfall-runoff modelling approaches have been applied to the runoff response of flood hydrograph in three experimental watershed of the western part of korea. Mathematical models of runoff response also have been studied including linear system theory based on modeling techniques. Eight models were operated at the five water level gauging stations and the parameters of each model were computed by the Rosenbrock's hill climbing method to minimize the objective function. For the parameter verification of the models, a different complex rainfall-runoff event was selected in the same of the three river basins and derived IUH of the each model could be calibrated. Furthermore multiple regressions of the logarithmic transformation method between model parameters and catchment characteristics were studied in the selected five station.

  • PDF

Fault Modeling and Diagnosis using Wavelet Decomposition in Squirrel-Cage Induction Motor Under Mixed Fault Condition (복합고장을 가지는 농형유도전동기의 모델링과 웨이블릿 분해를 이용한 고장진단)

  • Kim, Youn-Tae;Bae, Hyeon;Park, Jin-Su;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.691-697
    • /
    • 2006
  • Induction motors are critical components in industrial process. So there are many research in the condition based maintenance, online monitoring system, and fault detection. This paper presents a scheme on the detection and diagnosis of the three-phase squirrel induction motor under unbalanced voltage, broken rotor bar, and a combination of these two faults. Actually one fault happen in operation, it influence other component in motor or cause another faults. Accordingly it is useful to diagnose and detect a combination fault in induction motor as well as each fault. The proposed fault detection and diagnosis algorithm is based on the stator currents from the squirrel induction motor and simulated with the aid of Matlab Simulink.

Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: V. Prediction Model for the Phase Transformation Considering the Influence of Prior Austenite Grain Size and Cooling Rate in Weld HAZ of Low Alloyed Steel (용접 열영향부 미세조직 및 재질 예측 모델링: V. 저합금강의 초기 오스테나이트 결정립크기 및 냉각 속도의 영향을 고려한 용접 열영향부 상변태 모델)

  • Kim, Sang-Hoon;Moon, Joon-Oh;Lee, Yoon-Ki;Jeong, Hong-Chul;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.104-113
    • /
    • 2010
  • In this study, to predict the microstructure in weld HAZ of low alloyed steel, prediction model for the phase transformation considering the influence of prior austenite grain size and cooling rate was developed. For this study, six low alloyed steels were designed and the effect of alloying elements was also investigated. In order to develop the prediction model for ferrite transformation, isothermal ferrite transformation behaviors were analyzed by dilatometer system and 'Avrami equation' which was modified to consider the effect of prior austenite grain size. After that, model for ferrite phase transformation during continuous cooling was proposed based on the isothermal ferrite transformation model through applying the 'Additivity rule'. Also, start temperatures of ferrite transformation were predicted by $A_{r3}$ considering the cooling rate. CCT diagram was calculated through this model, these results were in good agreement with the experimental results. After ferrite transformation, bainite transformation was predicted using Esaka model which corresponded most closely to the experimental results among various models. The start temperatures of bainite transformation were determined using K. J. Lee model. Phase fraction of martensite was obtained according to phase fractions of ferrite and bainite.

A Study on Water Balance in Stationary Load Proton Exchange Membrane(PEM) Fuel Cell Power Generator (고정 부하를 갖는 PEM 연료전지 발전기에 있어서의 수분 평형에 관한 연구)

  • Bakhtiar, Agung;Oh, Hoo-Kyu;Yoon, Jung-In;Kim, Young-Bok;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.128-135
    • /
    • 2011
  • 일반적으로 PEM 연료전지에서는 수분 균형이 시스템의 효율에 결정적으로 영향을 미치기 때문에, 이에 대한 균형(balance)을 잡는 것이 매우 중요하다. 특히, 촉매 층에서 물이 넘치는 익수현상(flooding)이나 건조현상(drying)이 발생하게 되면 연료전지의 효율이 급격하게 저하하므로, 항상 수분의 균형이 잡히도록 시스템을 제어하는 것이 일반적이다. 이 때,수분의 익수현상이나 건조현상은 PEM 연료전지의 용량과 주위의 환경, 즉 온도와 습도에 많은 영향을 받게 된다. 금번 논문에서는 가정용 규모인 3kW급에서 10kW급까지의 PEM 연료전지를 설치하였을 때, 주위의 환경(온도와 습도)이 수분 이동에 어떠한 영향을 미치는 지를 시간에 따라서 시뮬레이션(simulation)한 결과를 보여주고 있다. 결과에서 유입공기의 온도가 $50^{\circ}C$ 이하일 경우, 고정부하가 5kW급 이하이면 대부분이 건조현상이 발생하였으나, 고정부하가 6kW급 이상이 되면 익수현상이 운전시간이 20분 이내에서 발생하였다. 또한 고정부하를 최고 10kW급까지 올린 경우, 유입공기의 온도가 $50^{\circ}C$까지는 익수현상이 발생하였으나 $60^{\circ}C$ 이상인 경우에는 거의 건조현상이 발생함을 알 수 있었다.

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.