• Title/Summary/Keyword: System Parameter

Search Result 6,819, Processing Time 0.032 seconds

Estimation of reflectivity-rainfall relationship parameters and uncertainty assessment for high resolution rainfall information (고해상도 강수정보 생산을 위한 레이더 반사도-강수량 관계식 매개변수 보정 및 불확실성 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.321-334
    • /
    • 2021
  • A fixed reflectivity-rainfall relationship approach, such as the Marshall-Palmer relationship, for an entire year and different seasons, can be problematic in cases where the relationship varies spatially and temporally throughout a region. From this perspective, this study explores the use of long-term radar reflectivity for South Korea to obtain a nationwide calibrated Z-R relationship and the associated uncertainties within a Bayesian inference framework. A calibrated spatially structured pattern in the parameters exists, particularly for the wet season and parameter for the dry season. A pronounced region of high values during the wet and dry seasons may be partially associated with storm movements in that season. Overall, the radar rainfall fields based on the proposed modeling procedure are similar to the observed rainfall fields. In contrast, the radar rainfall fields obtained from the existing Marshall-Palmer relationship show a systematic underestimation. In the event of high impact weather, it is expected that the value of national radar resources can be improved by establishing an active watershed-level hydrological analysis system.

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

Measurement of flash point for binary mixtures of Ethanol, 1-propanol, 2-propanol and 2,2,4-trimethylpentane (Ethanol, 1-propanol, 2-propanol 그리고 2,2,4-trimethylpentane 이성분 혼합계에 대한 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.140-146
    • /
    • 2019
  • Flammable substances, such as organic solvents, are commonly used in laboratories and industrial processes. The flash point of flammable liquid mixtures is a very important parameter for characterizing the ignition and explosion hazards, and the flash points of mixtures of $C_2{\sim}C_3$ alcohols and 2,2,4-trimethylpentane were measured in the present study. The 2,2,4-trimethylpentane is an important component of gasoline and is frequently used in the petroleum industry as a solvent. Lower flash point data were measured for the binary systems {ethanol + 2,2,4-trimethylpentane}, {1-propanol + 2,2,4-trimethylpentane}, and {2-propanol + 2,2,4-trimethylpentane}. The flash point measurements were carried out according to the standard test method (ASTM D3278) using a Stanhope-Seta closed cup flash point tester. The measured flash points were compared with the predicted values calculated using Raoult's law and also following $G^E$ models: Wilson, Non-Random Two Liquid (NRTL) and UNIversal QUAsiChemical (UNIQUAC). These models were able to predict the experimental flash points for different compositions of {$C_2{\sim}C_3$ alcohols + 2,2,4-trimethylpentane} mixtures with minimal deviations. The average absolute deviation between the predicted and measured lower flash point was less than 1.28 K. A minimum flash point behaviour was observed in all of the systems as in the many observed cases for the hydrocarbon and alcohol mixtures.

The Application of the Measurement of Heart Rate and Velocity during Training to Assess Racing Performance in Thoroughbred Horses (더러브렛 경주마에서 운동능력 평가를 위한 훈련 중 심박수 및 속도측정 수치 활용방안 연구)

  • Lee, Young-woo;Hwang, Hye-shin;Song, Hee-eun;Shim, Seung-tae;Ko, Jeong-ja;Seo, Jong-pil;Lee, Kyoung-kap
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.62-67
    • /
    • 2019
  • This study was performed to apply the measurement of heart rate and velocity in training horses for assessing race performance. Additionally, we aimed to identify parameters that can be used to evaluate the training level and exercise capacity. Eleven healthy 2- to 6-year-old Thoroughbreds were trained by the standard training program and heart rate and velocity were measured by using heart monitoring system and GPS. Regression analysis in heart rate and velocity data was performed to calculate velocity parameters. The mean maximal heart rate in gallop was $214{\pm}11bpm$. The mean $V_{140}$, $V_{180}$, $V_{200}$ and $VHR_{max}$ were $13.8{\pm}4.3km/h$, $37.5{\pm}3.8km/h$, $49.3{\pm}4.3km/h$ and $57.4{\pm}7.1km/h$ respectively. The mean $V_{140}$ of high performance racehorses was significantly higher than that of low performance racehorses (P < 0.05). Moreover, analyzing the correlation between velocity parameters and racing ability-related categories showed that $V_{140}$ was positively correlated with rating (P < 0.05), $V_{180}$ and $VHR_{max}$ were positively correlated with prize money per race (P < 0.05). Also, $V_{140}$ was significantly correlated with G1F (P < 0.05). The results of this study have shown that the measurement of heart rate and velocity during training could be useful methods to assess fitness for races or performance potential. Especially, $V_{140}$ is a good parameter to evaluate a performance of racehorses in Korea.

Maintenance of Platelet Counts with Low Level QC Materials and the Change in P-LCR according to Hemolysis with XN-9000 (XN-9000장비에서 Low Level QC물질에서의 혈소판 수 관리와 용혈에 따른 P-LCR의 변화)

  • Shim, Moon-Jung;Lee, Hyun-A
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.399-405
    • /
    • 2018
  • The platelet count in clinical laboratories is essential for the diagnosis and treatment of hemostasis abnormalities, and accurate platelet counting in the low count range is of prime importance for deciding if a platelet transfusion is needed and for monitoring after chemotherapy. Quality control is designed to reduce and correct any deficiencies in the internal analytical process of a clinical laboratory prior to the release of patient results. Fragmented erythrocytes are the major confusing factors for platelet counting because of their similar size to platelets. The authors found that the low range QC values were out of 2SD with a Sysmex automatic analyzer in internal quality control process. Thus far, there has been little discussion on the relationship between hemolysis and the platelet parameters. Therefore, this study focused on the performance of automated platelet counts, including the PLT-F, the PLT-I, and PLT-O methods at the low platelet range using the low level QC materials and compared the 5 platelet parameters with the hemolyzed samples. The results showed that the CV was the smallest with PLT-F and P-LCR increased from 18.4 to 31.9% in the hemolysis samples. These results indicate that a more accurate estimation of the platelet counts can be achieved using the PLT-F method than the PLT-I method at the low platelet range. The use of the PLT-F system improves the confidence of results in low platelets samples in a routine hematology laboratory. The results suggest that P-LCR is a new parameter in assessing samples when the specimen is suspected of hemolysis and deterioration. Nevertheless, further studies will be needed to establish the relationship with P-LCR and hemolysis using human blood specimens.

Retrieval Biases Analysis on Estimation of GNSS Precipitable Water Vapor by Tropospheric Zenith Hydrostatic Models (GNSS 가강수량 추정시 건조 지연 모델에 의한 복원 정밀도 해석)

  • Nam, JinYong;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.233-242
    • /
    • 2019
  • ZHD (Zenith Hydrostatic Delay) model is important parameter in estimating of GNSS (Global Navigation Satellite System) PWV (Precipitable Water Vapor) along with weighted mean temperature. The ZWD (Zenith Wet Delay) is tend to accumulate the ZHD error, so that biases from ZHD will be affected on the precision of GNSS PWV. In this paper, we compared the accuracy of GNSS PWV with radiosonde PWV using three ZHD models, such as Saastamoinen, Hopfield, and Black. Also, we adopted the KWMT (Korean Weighted Mean Temperature) model and the mean temperature which was observed by radiosonde on the retrieval processing of GNSS PWV. To this end, GNSS observation data during one year were processed to produce PWVs from a total of 5 GNSS permanent stations in Korea, and the GNSS PWVs were compared with radiosonde PWVs for the evaluating of biases. The PWV biases using mean temperature estimated by the KWMT model are smaller than radiosonde mean temperature. Also, we could confirm the result that the Saastamoinen ZHD which is most used in the GNSS meteorology is not valid in South Korea, because it cannot be exclude the possibility of biases by latitude or height of GNSS station.

A Review on Measurement Techniques and Constitutive Models of Suction in Unsaturated Bentonite Buffer (불포화 벤토나이트 완충재의 수분흡입력 측정기술 및 구성모델 고찰)

  • Lee, Jae Owan;Yoon, Seok;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.329-338
    • /
    • 2019
  • Suction of unsaturated bentonite buffers is a very important input parameter for hydro-mechanical performance assessment and design of an engineered barrier system. This study analyzed suction measurement techniques and constitutive models of unsaturated porous media reported in the literature, and suggested suction measurement techniques and constitutive models suitable for bentonite buffer in an HLW repository. The literature review showed the suction of bentonite buffer to be much higher than that of soil, as measured by total suction including matric suction and osmotic suction. The measurement methods (RH-Cell, RH-Cell/Sensor) using a relative humidity sensor were suitable for suction measurement of the bentonite buffer; the RH-Cell /Sensor method was more preferred in consideration of the temperature change due to radioactive decay heat and measurement time. Various water retention models of bentonite buffers have been proposed through experiments, but the van Genuchten model is mainly used as a constitutive model of hydro-mechanical performance assessment of unsaturated buffers. The water characteristic curve of bentonite buffers showed different tendencies according to bentonite type, dry density, temperature, salinity, sample state and hysteresis. Selection of water retention models and determination of model input parameters should consider the effects of these controlling factors so as to improve overall reliability.

A Study on Technological Forecasting for Promising Alternative Technologies Using Fisher-Pry Modification Model (Fisher-Pry 수정모형을 활용한 유망대체기술 예측에 관한 연구)

  • Hong, Sung-Il;Kim, Byung-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.104-114
    • /
    • 2019
  • In the global market competition, countries and businesses are actively engaged in technology prediction activities to maximize their profits by attempting to enter and preempting the core technology of the future. In this paper, we propose a growth model based on patent application trends to predict the time to replace a product with a promising new technology to dominate the market. Although the Fisher-Pry model that Bhargava generalized to predict the emergence of promising alternative technologies was relatively satisfactory compared to the original Fisher-Pry model, it was difficult to predict the replacement rate behavior properly due to a parameter problem. The application of the Fisher-Pry Modification Model in the form of a quadratic equation through the patent trend analysis of the optical storage system for the purpose of verifying the time alternative to the light storage technology has resulted in satisfactory verification results. It is expected that small and medium-sized companies and individual researchers will apply this model and use it more easily to predict the time to replace the market for promising replacement technologies.

Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual (전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발)

  • Kim, Dong-Chule;Kim, Yu-Seung;Yea, Chan-Su;Kim, Sun-Bin;Park, Seung-Min
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

Sound Visualization based on Emotional Analysis of Musical Parameters (음악 구성요소의 감정 구조 분석에 기반 한 시각화 연구)

  • Kim, Hey-Ran;Song, Eun-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.104-112
    • /
    • 2021
  • In this study, emotional analysis was conducted based on the basic attribute data of music and the emotional model in psychology, and the result was applied to the visualization rules in the formative arts. In the existing studies using musical parameter, there were many cases with more practical purposes to classify, search, and recommend music for people. In this study, the focus was on enabling sound data to be used as a material for creating artworks and used for aesthetic expression. In order to study the music visualization as an art form, a method that can include human emotions should be designed, which is the characteristics of the arts itself. Therefore, a well-structured basic classification of musical attributes and a classification system on emotions were provided. Also, through the shape, color, and animation of the visual elements, the visualization of the musical elements was performed by reflecting the subdivided input parameters based on emotions. This study can be used as basic data for artists who explore a field of music visualization, and the analysis method and work results for matching emotion-based music components and visualizations will be the basis for automated visualization by artificial intelligence in the future.