• Title/Summary/Keyword: System Parameter

Search Result 6,861, Processing Time 0.034 seconds

System Identification of ARMAX Model using the Genetic Algorithm (유전자 알고리즘을 이용한 ARMAX 모델의 시스템 식별)

  • 정경권;권성훈;이정훈;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.146-150
    • /
    • 1998
  • In this paper, we propose a nonlinear system identification method using the genetic algorithm. We represent the nonlinear system as a parameter vector and a measurement vector of ARMAX model. In order to identify the nonlinear system, we find the parameter vector using the genetic algorithm. The parameter vector is regarded as a chromosome of gene. The error between the desired output and estimated output every sampling period is used to calculate the fitness of one gene. The simulation results showed the effectiveness of using the genetic algorithm in the nonlinear system identification.

  • PDF

Robust Speed Control of PMSM with Fuzzy Gain Scheduling

  • Won, Tae-Hyun;Kim, Mun-Soo;Park, Han-Woong;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.1-111
    • /
    • 2001
  • In this paper, a robust speed control is proposed for Permanent Magnet Synchronous Motor system. PMSM without reduction gear has been widely used in high performance application such as robots and machine tools. It is well known that the control performance of the PMSM is very sensitive to load disturbance and system parameter variation. The idea of the proposed speed controller based on combination of sliding mode control with fuzzy gain scheduling. The sliding mode controller leads to fast system dynamics of slight sensitivity to the load disturbance and system parameter variations, the fuzzy gain scheduling mechanism reduces the chattering phenomenon. The simulation results have proved that the proposed control scheme provides a robust control performance under load disturbance and system parameter variation.

  • PDF

Damage detection from the variation of parameter matrices estimated by incomplete FRF data

  • Rahmatalla, Salam;Eun, Hee-Chang;Lee, Eun-Taik
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.55-70
    • /
    • 2012
  • It is not easy to experimentally obtain the FRF (Frequency Response Function) matrix corresponding to a full set of DOFs (degrees of freedom) for a dynamic system. Utilizing FRF data measured at specific positions, with DOFs less than that of the system, as constraints to describe a damaged system, this study identifies parameter matrices such as mass, stiffness and damping matrices of the system, and provides a damage identification method from their variations. The proposed parameter identification method is compared to Lee and Kim's method and Fritzen's method. The validity of the proposed damage identification method is illustrated in a simple dynamic system.

A Study on the Development of Nuclear Safety Parameter Display System for Korean Nuclear Power Plants (한국원전의 SPDS 개발에 관한 연구)

  • Kim, Dong-Hoon;Moon, Byung-Soo;Kim, Jae-Hee
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.42-50
    • /
    • 1987
  • Through a project "Development of Nuclear Safety Parameter Monitoring System", a nuclear data link system was established between Kori nuclear unit 2 and Nuclear Safety Center. We present in this paper the selected parameter sets, a description of the developed pseudo-network software and the functional descriptions of the equipments involved. We also include the conceptual design of the Kori four unit ERF/SPDS system, along with the localization direction for the related software and hardware. hardware.

  • PDF

A new modeling technique for the distributed parameter system - digital modeling approach (연속계의 이산화를 위한 새로운 모델링 기법)

  • 이용관;김인수;홍성욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.227-232
    • /
    • 1995
  • This paper presents a digital modeling technique for the distributed parameter system. The basic idea of the proposed technique is to discretize a continuous system with respect to the spatial coordinate using the approximate methods such as bilinear method and backward difference method. The response of the discretized system is analyzed by Laplace transform and Z transform. The computational result of the proposed technique in a torsional shaft is compared with the exact solution and the result of the finite element method.

  • PDF

Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter. (미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발.)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF

Real-Time Flood Forecasting Using Rainfall-Runoff Model(I) : Theory and Modeling (강우-유출모형을 이용한 실시간 홍수예측(I) : 이론과 모형화)

  • 정동국;이길성
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.89-99
    • /
    • 1994
  • Flood forecasting in Korea has been based on the off-line parameter estimation method. But recent flood forecasting studies explore on-line recursive parameter estimation algorithms. In this study, a simultaneous adaptive estimation of system states and parameters for rainfall-runoff model is investigated for on-line real-time flood forecasting and parameter estimation. The proposed flood routing system is composed of Flood forecasting in Korea has been based on the off-line parameter estimation method. But recent flood forecasting studies explore on-line recursive parameter estimation algorithms. In this study, a simultaneous adaptive estimation of system states and parameters for rainfall-runoff model is investigated for on-line real-time flood forecasting and parameter estimation. The proposed flood routing system is composed of ø-index in the assessment of effective rainfall and the cascade of nonlinear reservoirs accounting for translation effect in flood routing. To combine the flood routing model with a parameter estimation model, system states and parameters are treated with the extended state-space formulation. Generalized least squares and maximum a posterior estimation algorithms are comparatively examined as estimation techniques for the state-space model. The sensitivity analysis is to investigate the identifiability of the parameters. The index of sensitivity used in this study is the covariance matrix of the estimated parameters.-index in the assessment of effective rainfall and the cascade of nonlinear reservoirs accounting for translation effect in flood routing. To combine the flood routing model with a parameter estimation model, system states and parameters are treated with the extended state-space formulation. Generalized least squares and maximum a posterior estimation algorithms are comparatively examined as estimation techniques for the state-space model. The sensitivity analysis is to investigate the identifiability of the parameters. The index of sensitivity used in this study is the covariance matrix of the estimated parameters.

  • PDF

Stochastic response of colored noise parametric system

  • Heo, Hoon;Paik, Jong-Han;Oh, Jin-Hyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.451-455
    • /
    • 1993
  • Interaction between system and disturbance results in system with time-dependent parameter. Parameter variation due to interaction has random characteristics. Most of the randomly varying parameters in control problem is regarded as white noise random process which is not a realistic model. In real situation those random variation is colored noise random process. Modified F-P-K equation is proposed to get the response of the random parametric system using some correction factor. Proposed technique is employed to obtain the colored noise parametric system response and confirmed via Monte-Carlo Simulation.

  • PDF

A Robust Control of Horizontal-Shaft Magnetic Bearing System Using Linear Matrix Inequality Technique (선형행렬부등식 기법을 이용한 횡축형 자기 베어링 시스템의 로버스트 제어)

  • 김창화;정병건;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.321-330
    • /
    • 2001
  • Magnetic bearing system is frequently used for high-speed rotating machines because of its frictionless property. But the magnetic bearing system needs feedback controller for stabilization. This paper presents a robust controller design by using linear matrix inequality for magnetic bearing system which shows the control performance and robust stability under the physical parameter perturbations. To the end, the validity of the designed controller is investigated through computer simulation.

  • PDF

The Response Improvement of PD Type FLC System by Self Tuning (자기동조에 의한 PD 형 퍼지제어시스템의 응답 개선)

  • Choi, Hansoo;Lee, Kyoung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1101-1105
    • /
    • 2012
  • This study proposes a method for improvement of PD type fuzzy controller. The method includes self tuner using gradient algorithm that is one of the optimization algorithms. The proposed controller improves simple Takagi-Sugeno type FLC (Fuzzy Logic Control) system. The simple Takagi-Sugeno type FLC system changes nonlinear characteristic to linear parameters of consequent membership function. The simple FLC system could control the system by calibrating parameter of consequent membership function that changes the system response. While the determination on parameter of the simple FLC system works well only partially, the proposed method is needed to determine parameters that work for overall response. The simple FLC system doesn't predict the response characteristics. While the simple FLC system works just like proportional part of PID, our system includes derivative part to predict the next response. The proposed controller is constructed with P part and D part FLC system that characteristic parameter on system response is changed by self tuner for effective response. Since the proposed controller doesn't include integral part, it can't eliminate steady state error. So we include a gain to eliminate the steady state error.