• Title/Summary/Keyword: System Dynamic

Search Result 14,503, Processing Time 0.045 seconds

System dynamics simulation of the thermal dynamic processes in nuclear power plants

  • El-Sefy, Mohamed;Ezzeldin, Mohamed;El-Dakhakhni, Wael;Wiebe, Lydell;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1540-1553
    • /
    • 2019
  • A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.

Dynamic Analysis of a Tilted HDD spindle system due to Manufacturing Tolerance (가공 오차를 고려한 스핀들 시스템의 동적 특성 해석)

  • Koak, Kyu-Yeol;Kim, Hak-Woon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.852-858
    • /
    • 2007
  • This paper investigates the dynamic characteristics of a tilted HDD spindle system with fluid dynamic bearings (FDBs). Tilting motion of a HDD spindle system may be caused by improper manufacturing tolerance, such as imperfect cylindricity between shaft and sleeve of FDBs, imperfect perpendicularity between shaft and thrust as well as the gyroscopic moment of the unbalanced mass of the rotating part. Tilting motion may result in the instability of the HDD spindle system and it may increase the disk run-out to limit memory capacity. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity and the perpendicularity. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to study whirling and tilting motions. This research shows that the cylindricity and the perpendicularity increase the tilting angle and whirl radius of the rotor.

  • PDF

Modeling and Dynamic Stability Analysis of a Flying Beam Undertaking Pulsating Follower Forces Considering the Nonlinear Effect Due to Rigid Body Motion (강체운동 비선형 효과를 고려한 맥동 종동력을 받아 비행하는 보 구조물의 모델링 및 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.510-515
    • /
    • 2000
  • Dynamic stability of a flying structure undertaking constant and pulsating axial forces is investigated in this paper. The equations of motion of the structure, which is idealized as a free-free beam, are derived by using the hybrid variable method and the assumed mode method. The structural system includes a directional control unit to obtain the directional stability. The analysis model presented in this paper considers the nonlinear effect due to rigid body motion of the beam. Dynamic stability of the system is influenced by the nonlinear effect. In order to examine the nonlinear effect, first the unstable regions of the linear system are obtained by using the method based upon Floquet's theory, and dynamic responses of the nonlinear system in the unstable region are obtained by using direct time integration method. Dynamic stability of the nonlinear system is determined by the obtained dynamic responses.

  • PDF

Dynamic Response Analysis of AGT Vehicle Considering Surface Roughness of Railway (노면 요철을 고려한 AGT 차량의 동적 응답 해석)

  • Song, Jae-Pil;Kim, Chul-Woo;Kim, Ki-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.986-993
    • /
    • 2002
  • The equations of motion for an automated guide-way transit(AGT) system running on a path with roughness have been derived to investigate dynamic responses and wheel loads of moving vehicles of the AGT system. A vehicle of the AGT system is idealized as three-dimensional model with 11 degree-of-freedom. The computer program is developed to solve the dynamic equations, and anlatical results are verified by comparing the results with experimental oness. Parametric studies are carried out to investigate the dynamic responses of an AGT vehicle according to vehicle speeds, surface roughness, damping and stiffness of suspension systems. The parametric study demonstrates that amplitudes of dynamic responses and the wheel loads have a tendency to increase according to travel speeds, the stiffness of suspension system and surface roughness. On the other hand. those amplitudes tend to decrease according to increase of damping of the suspension system.

Modelling and dynamic analysis of electro-mechanical system in machine tools (공작기계 시스템의 모델링과 동적 특성 분석)

  • 박용환;신흥철;문희성;최종률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.991-994
    • /
    • 1995
  • Recent trend in machine tools is pursuing the high precision and high speed facility and its architecture is being more complicated. With this tendency, it is required the more precise dynamic analysis of electro-mechanical system in machine tools. In this paper, the exact mathematical model of feed and spindle system of a typical machine tools was induced. The feed system is modeled as 7-mass system including the workpiece and the spindle system as 4-mass system. The simulation results show that the induced model depicts the characteristics of real system very well. The effects of each mechanical element to dynamic motion of a machine are analyzed by simulation with the induced model. It ia anticipated that the induced model can be used in the analysis of various machine architectures and in the design stage of new machine tools.

  • PDF

Study on Dynamic Absorbing System using MR Damper in High Impulsive Force System (MR 댐퍼를 이용한 고충격 시스템의 완충 특성)

  • 김효준;김상균;최의중;이성배;홍계정;오세빈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.431-434
    • /
    • 2002
  • In this study, the dynamic absorbing system using MR damper for the multiple structure system with high-level-impact force has been investigated. Based on the experiment and analysis of short recoil system, the dynamic absorbing system has been constructed by using MR damper and stroke-dependent variable damper. Through a series of experimental works with the devised test bench, the absorbing system with MR damper using reverse control is effective for reduction of the transmitted force, furthermore, for implementation to the multi-structure impulsive force system.

  • PDF

PI Controller Design of the Refrigeration System Based on Dynamic Characteristic of the Second Order Model

  • Jung, Young-Mi;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.200-206
    • /
    • 2014
  • This paper deals with deterministic PI controller design based on dynamic characteristics for refrigeration system. The temperature control system of an oil cooler is described as a typical 2nd order model of the refrigeration system which has zeros in a transfer function. PI controller gains satisfying control specifications are represented by the dynamic characteristic functions using relationship between the parameters and the control specifications in the model. Phase margin was considered to increase robustness of the oil cooler control system. Furthermore, the influence of zeros in the model to the control specifications was analyzed in detail for improving control performance. The validity of the suggested PI controller design was investigated using the four types of gains which had been already confirmed their control performances through experiments.

A Study on Design of the Trip Computer for ECC System Based on Dynamic Safety System

  • Kim, Seog-Nam;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.316-327
    • /
    • 2000
  • The Emergency Core Cooling System in current nuclear power plants typically has a considerable number of complex functions and largely cumbersome operator interfaces. Functions for initiation, switch-over between various phases of operation, interlocks, monitoring, and alarming are usually performed by relays and analog comparator logic which are difficult to maintain and test. To improve problems of an analog based ECC (Emergency Core Cooling) System, the trip computer for ECCS based on Dynamic Safety System (DSS) is implemented. The DSS is a computer based reactor protection system that has fail-safe nature and performs a dynamic self-testing. The most important feature of the DSS is the introduction of test signal that send the system into a tripped state. The test signals are interleaved with the plant signals to produce an output which switches between a tripped and health state. The dynamic operation is a key feature of the failsafe design of the system. In this work, a possible implementation of the DSS using PLC is presented for a CANDU Reactor. ECC System of the CANDU Reactor is selected as the reference system.

  • PDF

Vision-based Input-Output System identification for pedestrian suspension bridges

  • Lim, Jeonghyeok;Yoon, Hyungchul
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.715-728
    • /
    • 2022
  • Recently, numbers of long span pedestrian suspension bridges have been constructed worldwide. While recent tragedies regarding pedestrian suspension bridges have shown how these bridges can wreak havoc on the society, there are no specific guidelines for construction standards nor safety inspections yet. Therefore, a structural health monitoring system that could help ensure the safety of pedestrian suspension bridges are needed. System identification is one of the popular applications for structural health monitoring method, which estimates the dynamic system. Most of the system identification methods for bridges are currently adapting output-only system identification method, which assumes the dynamic load to be a white noise due to the difficulty of measuring the dynamic load. In the case of pedestrian suspension bridges, the pedestrian load is within specific frequency range, resulting in large errors when using the output-only system identification method. Therefore, this study aims to develop a system identification method for pedestrian suspension bridges considering both input and output of the dynamic system. This study estimates the location and the magnitude of the pedestrian load, as well as the dynamic response of the pedestrian bridges by utilizing artificial intelligence and computer vision techniques. A simulation-based validation test was conducted to verify the performance of the proposed system. The proposed method is expected to improve the accuracy and the efficiency of the current inspection and monitoring systems for pedestrian suspension bridges.

Intelligent Soft Driving System for an Electric Four-wheeled Vehicle Eluding Dynamic Obstacles

  • Inoue, Masaki;Yasunobu, Seiji
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.583-586
    • /
    • 2003
  • There are electric four-wheeled vehicles to assist elder people. Because of the vehicles'dynamic characteristic such as impossible to move abeam, it is difficult for these people who has little experience and has little knowledge to drive. Also to judge the future state of dynamic obstacles and to decide how to elude them safely are more difficult. We installed the predictive fuzzy controller(evaluates the future states which several kinds of operation candidates were done and chooses the best one) that modeled humans'algorithms in the system. Human predicts the future states of dynamic obstacles and chooses an operation(wait, steer, go back, etc) to elude safely. To elude dynamic obstacles flexibly, we added expert's knowledge for safe driving to this controller. In this paper, we propose the intelligent soft driving system by the controller that can elude dynamic obstacles safely, and we confirm the effectiveness by a simulation.

  • PDF