• 제목/요약/키워드: Synthesized powder materials

검색결과 786건 처리시간 0.028초

Fabrication of Nanostructured WC/Co Alloy by Chemical Processes

  • Kim, Byoung-Kee;Ha, Gook-Hyun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.346-347
    • /
    • 2006
  • New manufacturing processes, such as thermochemical, mechanochemical and chemical vapor condensation processes have been developed to obtain nanostructured WC/Co materials. Nanoscale size WC/Co composite powders of near 100-150nm can be synthesizes by thermochemical and mechanochemical processes using water soluble precursors. Non-agglomerated and nano sized WC powder can be synthesized by the chemical vapor condensation process using metallorganic precursors as starting materials. In this paper, the scientific and technical issues on synthesis and consolidation of nanostructured WC/Co alloys produced by new chemical processes are introduced.

  • PDF

염 보조 초음파 분무 열분해 공정으로 합성된 TiO2 나노입자의 특성에 열분해 온도가 미치는 영향 (Effect of Pyrolysis temperature on TiO2 Nanoparticles Synthesized by a Salt-assisted Ultrasonic Spray Pyrolysis Process)

  • 유재현;지명준;박우영;이영인
    • 한국분말재료학회지
    • /
    • 제26권3호
    • /
    • pp.237-242
    • /
    • 2019
  • In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.

PVA 용액법을 통한 나노 Cu 분말합성 및 소결체의 열적 특성 (Synthesis of Nano-Sized Cu Powder by PVA Solution Method and Thermal Characteristics of Sintered Cu Powder Compacts)

  • 오복현;마충일;이상진
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.93-98
    • /
    • 2020
  • Effective control of the heat generated from electronics and semiconductor devices requires a high thermal conductivity and a low thermal expansion coefficient appropriate for devices or modules. A method of reducing the thermal expansion coefficient of Cu has been suggested wherein a ceramic filler having a low thermal expansion coefficient is applied to Cu, which has high thermal conductivity. In this study, using pressureless sintering rather than costly pressure sintering, a polymer solution synthesis method was used to make nano-sized Cu powder for application to Cu matrix with an AlN filler. Due to the low sinterability, the sintered Cu prepared from commercial Cu powder included large pores inside the sintered bodies. A sintered Cu body with Zn, as a liquid phase sintering agent, was prepared by the polymer solution synthesis method for exclusion of pores, which affect thermal conductivity and thermal expansion. The pressureless sintered Cu bodies including Zn showed higher thermal conductivity (180 W/m·K) and lower thermal expansion coefficient (15.8×10-6/℃) than did the monolithic synthesized Cu sintered body.

물유리를 이용한 고순도 나노실리카 제조 (Synthesis of High Purity Nano-Silica Using Water Glass)

  • 최진석;이현권;안성진
    • 한국재료학회지
    • /
    • 제24권5호
    • /
    • pp.271-276
    • /
    • 2014
  • Silica nano-powder (SNP) is an inorganic material able to provide high-performance in various fields because of its multiple functions. Methods used to synthesize high purity SNP, include crushing silica minerals, vapor reaction of silica chloride, and a sol-gel process using TEOS and sodium silicate solution. The sol-gel process is the cheapest method for synthesis of SNP, and was used in this study. First, we investigated the shape and the size of the silica-powder particles in relation to the variation of HCl and sodium silicate concentrations. After drying, the shape of nano-silica powder differed in relation to variations in the HCl concentration. As the pH of the solution increased, so did the density of crosslinking. Initially, there was NaCl in the SNP. To increase its purity, we adopted a washing process that included centrifugation and filtration. After washing, the last of the NaCl was removed using DI water, leaving only amorphous silica powder. The purity of nano-silica powder synthesized using sodium silicate was over 99.6%.

기계적 합금화법을 이용한 전이금속 도핑에 따른 TiO2분말의 광촉매 특성 (Photocatalytic Behaviors of Transition Metal Ions Doped TiO2 Synthesized by Mechanical Alloying)

  • 우승희;김흥회;김선재;이창규
    • 한국분말재료학회지
    • /
    • 제12권4호
    • /
    • pp.266-272
    • /
    • 2005
  • Transition metal ions($Ni^{2+}$, $Cr^{3+}$ and $V^{5+}$) doped $TiO_2$ nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped $TiO_2$ powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared $TiO_2$ powders, $NiO^{2+}$ doped $TiO_2$ powders, showed excellent photooxidative ability in 4CP decomposition.

니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성 (Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications)

  • 김동원;권구현;김경태
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.

폴리머 고착공정을 통한 저온소성기판용 Anorthite의 제조 (Fabrication of Anorthite for Low-Firing Ceramic Substrate by PVA Steric-Entrapment Route)

  • 김광석;이충효;이상진
    • 한국재료학회지
    • /
    • 제12권8호
    • /
    • pp.595-599
    • /
    • 2002
  • A homogeneous and stable, amorphous-type, anorthite (CaO $Al_2$$O_3$ $2SiO_2$)powder was synthesized by an organic-inorganic steric entrapment route. Polyvinyl alcohol ( PVA) was used as an organic carrier for the precursor ceramic gel. The PVA content, its degree of polymerization and type of silica sol had a significant influence on the calcination and crystallization behavior of the precursors. For densifiction and crystallization at low temperature, porous and soft, amorphous-type anorthite powder was planetary milled for 20h. The milled powder crystallized to stable anorthite phase and densified to a relative density of 94% below $1000^{\circ}C$. In the development of crystalline phases of the planetary milled powder, omisteinbergite phase was unusually observed at $900^{\circ}C$, and then anorthite was observed at $950^{\circ}C$. The sintered anorthite had a thermal expansion coefficient of $4.6$\times$10^{-6}$ /$^{\circ}C$ and a dielectric constant of 7.5 at 1 MHz. Finally, the anorthite synthesized by the new process is expected to be an useful material for low-firing ceramic substrate.

저온균일침전법으로 제조된 TiO2 분말의 아크릴레진에서의 분산특성 및 광분해 효과 (Dispersion Properties and Photocatalytic Activities of TiO2 Powders Obtained by Homogeneous Precipitation Process at Low Temperature in a Acrylic Resin)

  • 우승희;김흥회;이창규
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.503-509
    • /
    • 2004
  • Dispersion stabilities and photocatalytic activities of rutile $TiO_{2}$ powders with unique nano-structure synthesized by homogeneous precipitation process at low temperature(HPPLT) have been investigated in the acrylic resin containing fluorostyrene in the range of 0~0.16 mole. Isoelectric point of $TiO_{2}$ in the acrylic resin placed in the neutral region whereas that of $TiO_{2}$ in the water placed in the acidic region, indicating that zeta potential and agglomeration of $TiO_{2}$ powder is strongly dependent on the pH and the type of solvent. To prepare an adhesion, an acrylic resin containing fluorostyrene was synthesized by a radical polymerization. The adhesion of coating layer was increased with increasing fluorostyrene's contents without changing the dispersion stabilities and degrading photocatalytic properties.

직접질화법에 의한 (Ti,Al)N계 복합질화물의 합성(II) (Synthesis of (Ti,Al)N Powder by the Direct Nitridation(II))

  • 조영수;이영기;손용운;박경호;김석윤
    • 열처리공학회지
    • /
    • 제9권3호
    • /
    • pp.219-227
    • /
    • 1996
  • The purpose of this research is to develop the technology for the synthesis of (Ti,Al)N powder, which shows simultaneously the excellent properties of TiN and AlN, from the Ti-Al intermetallic compounds by the direct nitriding method. The effects of variables such as temperature, Ti-Al intermetallic compounds ($TiAl_3$, TiAl and $Ti_3Al$) were investigated by TG, XRD and SEM. The (Ti,Al)N powder can be easily synthesized from the intermetallic compounds by the direct nitriding method. Among the intermetallic compounds, the nitriding behavior increased with TiAl> $Ti_3Al$ > $TiAl_3$, as the difference of diffusion coefficient for nitrogen in each materials. The ternary nitride such as $Ti_2AlN$ and $Ti_3Al_2N_2$ can be synthesized by the direct nitriding method, although the ternary nitride coexist with TiN and AlN. The ternary nitrides are stable below $1400^{\circ}C$, but these are gradually decomposed into TiN and AlN above $1400^{\circ}C$.

  • PDF

Fe 나노분말을 사용한 환원-확산공정에서 Sm2Fe17 합금상형성에 미치는 공정온도의 영향 (Effect of Process Temperature on the Sm2Fe17 Alloying Process During a Reduction-Diffusion Process Using Fe Nanopowder)

  • 윤준철;이건용;이재성
    • 대한금속재료학회지
    • /
    • 제48권11호
    • /
    • pp.995-1002
    • /
    • 2010
  • This study investigated the effect of process temperature on the alloying process during synthesis of $Sm_2Fe_{17}$ powder from ball-milled samarium oxide ($Sm_2O_3$) powders and a solid reducing agent of calcium hydrides ($CaH_2$) using iron nanopowder (n-Fe powder) by a reduction-diffusion (R-D) process. The $n-Fe-Sm_2O_3-CaH_2$ mixed powders were subjected to heat treatment at $850{\sim}1100^{\circ}C$ in $Ar-H_2$ for 5 h. It was found that the iron nanopowders in the mixed powders are sintered below $850^{\circ}C$ during the R-D process and the $SmH_2$ is synthesized by a reduced Sm that combines with $H_2$ around $850^{\circ}C$. The results showed that $SmH_2$ is able to separate Sm and $H_2$ respectively depending on an increase in process temperature, and the formed $Sm_2Fe_{17}$ phase on the surface of the sintered Fe nanopowder agglomerated at temperatures of $950{\sim}1100^{\circ}C$ in this study. The formation of the $Sm_2Fe_{17}$ layer is mainly due to the diffusion reaction of Sm atoms into the sintered Fe nanopowder, which agglomerates above $950^{\circ}C$. We concluded that nanoscale $Sm_2Fe_{17}$ powder can be synthesized by controlling the diffusion depth using well-dispersed Fe nanopowders.