• Title/Summary/Keyword: Synthesis of thin film

Search Result 286, Processing Time 0.03 seconds

Synthesis and application of Pt and hybrid Pt-$SiO_2$ nanoparticles and control of particles layer thickness (Pt 나노입자와 Hybrid Pt-$SiO_2$ 나노입자의 합성과 활용 및 입자박막 제어)

  • Choi, Byung-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.301-305
    • /
    • 2009
  • Pt nanoparticles with a narrow size distribution (dia. ~4 nm) were synthesized via an alcohol reduction method and used for the fabrication of hybrid Pt-$SiO_2$ nanoparticles. Also, the self-assembled monolayer of Pt nanoparticles (NPs) was studied as a charge trapping layer for non-volatile memory (NVM) applications. A metal-oxide-semiconductor (MOS) type memory device with Pt NPs exhibits a relatively large memory window. These results indicate that the self-assembled Pt NPs can be utilized for NVM devices. In addition, it was tried to show the control of thin-film thickness of hybrid Pt-$SiO_2$ nanoparticles indicating the possibility of much applications for the MOS type memory devices.

  • PDF

The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature (솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구)

  • 심희상;나윤채;조인화;성영은
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF

Two Dimensional (2D) Nanomaterials based Composite Membrane for Desalination (2차원 나노재료 기반 복합막을 이용한 해수담수화)

  • Lee, Yu Kyung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.111-123
    • /
    • 2020
  • Growing industrialization and climate change lead to the huge demand for clean drinking water. Desalination of sea water by membrane separation process is one of the alternative and economically viable methods to fulfil the demand for water. In the membrane separation process, the presence of 2D materials enhances the performance of membrane by facilitating the water permeation, salt rejection, flux rate, and selectivity compared to the traditional reverse osmosis thin-film-composite membranes. In this review, composite membranes with different kinds of 2D materials are discussed on the basis of materials synthesis, characterization and desalination process.

Growth of Carbon Nanotubes for Nano Device Application (나노 디바이스 응용을 위한 탄소나노튜브 성장 특성)

  • Park, Yong-Wook;Lee, Seung-Dae
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • Carbon nanotubes (CNTs) were grown by a thermal chemical vapor deposition (CVD) method, which has been regarded as one of the most promising candidates for the synthesis of CNTs due to low cost and high growth yield. The Ethylene $(C_2H_4)$, hydrogen $(H_2)$ and Argon(Ar) gases were used for the growth of CNTs at $700^{\circ}C$. As a catalyst for CNTs growth, Fe thin film and Iron nitrate and Molybdenyl acetylacetonate solution with alumina nano-particle were prepared on $SiO_2/Si$ substrate. The growth properties of CNTs were analyzed by SEM and AFM.

  • PDF

Synthesis of TiO2/ITO Nanostructure Photoelectrodes and Their Application for Dye-sensitized Solar Cells (TiO2/ITO 나노구조체 광전극의 합성 및 염료감응 태양전지에의 적용)

  • Kim, Dae-Hyun;Park, Kyung-Soo;Choi, Young-Jin;Choi, Heon-Jin;Park, Jae-Gwan
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.94-98
    • /
    • 2011
  • A Sn-doped $In_2O_3$ (ITO) nanowire photoelectrode was produced using a simple metal evaporation method at low synthesis temperature (< $540^{\circ}C$). The nanowire electrodes have large surface area compared with that of flat ITO thin film, and show low electrical resistivity of $5.6{\times}10^{-3}{\Omega}cm$ at room temperature. In order to apply ITO nanowires to the photoelectrodes of dye-sensitized solar cell (DSSC), those surfaces were modified by $TiO_2$ nanoparticles using a chemical bath deposition (CBD) method. The conversion efficiency of the fabricated $TiO_2$/ITO nanostructure-based DSSC was obtained at 1.4%, which was increased value by a factor of 6 than one without ITO nanowires photoelectrode. This result is attributed to the large surface area and superior electrical property of the ITO nanowires photoelectrode, as well as the structural advantages, including short diffusion length of photo-induced electrons, of the fabricated $TiO_2$/ITO nanostructure-based DSSC.

Optimization of Growth Gases for the Low-temperature Synthesis of Carbon Nanotubes (탄소나노튜브의 저온성장을 위한 합성가스의 최적화 연구)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Han-Sung;Goak, Jeung-Choon;Hwang, Ho-Soo;Kong, Byung-Yun;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.342-349
    • /
    • 2009
  • This study investigated the growth characteristics of carbon nanotubes (CNTs) by changing a period of annealing time and a $C_{2}H_{2}/H_2$ flow ratio at temperature as low as $450^{\circ}C$ with inductively coupled plasma chemical vapor deposition. The 1-nm-thick Fe-Ni-Co alloy thin film served as a catalyst layer for the growth of CNTs, which was thermally evaporated on the 15-nm-thick Al underlayer deposited on the 50-nm-thick Ti diffusion barrier. The annealing at low temperature of $450^{\circ}C$ brought about almost no granulation of the catalyst layer, and the CNT growth was not affected by a period of annealing time. A study of changing the flow rate of $C_{2}H_{2}$ and $H_2$ showed that as the ratio of the $C_{2}H_{2}$ flow rate to the $H_2$ flow rate was lowered, the CNTs were grown to be longer With further decreasing the flow ratio, the length of CNTs reached the maximum and then became shorter. Under the optimized gas flow rates, we successfully synthesized CNTs with a uniform length over a 4-inch Si wafer at $450^{\circ}C$.

Synthesis and Characterization of Large-Area and Highly Crystalline Tungsten Disulphide (WS2) Atomic Layer by Chemical Vapor Deposition

  • Kim, Ji Sun;Kim, Yooseok;Park, Seung-Ho;Ko, Yong Hun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.361.2-361.2
    • /
    • 2014
  • Transition metal dichalcogenides (MoS2, WS2, WSe2, MoSe2, NbS2, NbSe2, etc.) are layered materials that can exhibit semiconducting, metallic and even superconducting behavior. In the bulk form, the semiconducting phases (MoS2, WS2, WSe2, MoSe2) have an indirect band gap. Recently, these layered systems have attracted a great deal of attention mainly due to their complementary electronic properties when compared to other two-dimensional materials, such as graphene (a semimetal) and boron nitride (an insulator). However, these bulk properties could be significantly modified when the system becomes mono-layered; the indirect band gap becomes direct. Such changes in the band structure when reducing the thickness of a WS2 film have important implications for the development of novel applications, such as valleytronics. In this work, we report for the controlled synthesis of large-area (~cm2) single-, bi-, and few-layer WS2 using a two-step process. WOx thin films were deposited onto a Si/SiO2 substrate, and these films were then sulfurized under vacuum in a second step occurring at high temperatures ($750^{\circ}C$). Furthermore, we have developed an efficient route to transfer these WS2 films onto different substrates, using concentrated HF. WS2 films of different thicknesses have been analyzed by optical microscopy, Raman spectroscopy, and high-resolution transmission electron microscopy.

  • PDF

Synthesis of TiO2 Nanowires by Metallorganic Chemical Vapor Deposition (유기금속 화학기상증착법을 이용한 TiO2 나노선 제조)

  • Heo, Hun-Hoe;Nguyen, Thi Quynh Hoa;Lim, Jae-Kyun;Kim, Gil-Moo;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.686-690
    • /
    • 2010
  • $TiO_2$ nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The $TiO_2$ nanowires were grown at a high density on Si(100) at $510^{\circ}C$, which is near the complete decomposition temperature ($527^{\circ}C$) of the Ti precursor $(Ti(O-iPr)_2(dpm)_2)$. At $470^{\circ}C$, only very thin (< $0.1{\mu}m$) $TiO_2$ film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to $550^{\circ}C$ and $670^{\circ}C$, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The $TiO_2$ nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The $TiO_2$ nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow $TiO_2$ nanowires, which hold significant promise for various photocatalysis and solar cell applications.

Design of Miniaturized Microwave Amplifier Using Capacitively-Coupled Match Circuit(CCMC) under Conditionally Stable State (조건 안정 상태에서의 용량성 결합 정합 회로를 이용한 소형 마이크로파 증폭기 설계에 관한 연구)

  • Ryu, Seung-Kab;Hwang, In-Ho;Kim, Yong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.929-934
    • /
    • 2006
  • In the paper, we suggest a simpler synthesis technique for capacitively-coupled match circuit(CCMC) which have a function of DC block and impedance matching simultaneously, and introduce a stability margin analysis technique for designing microwave amplifier under conditionally stable state. Stability margin analysis is used to determine optimum match point that ensure maximum gain under the given stability margin. It can reduce time consuming work for selecting match points in the conditionally stable state. Also, suggested miniaturization scheme of matching network is distinguished from previous work with respect to reducing deterministic parameters for CCMC synthesis. To verify utility of suggested method, 24 GHz gain block is fabricated under conditionally stable state using an internal thin-film fabrication process, Measured results show a stable gain of 10 dB and flatness of 1 dB, which is well coincident with simulated one.

Synthesis and evaluation of DLC thin film with low friction coefficient prepared by Plasma Chemical Vapor Deposition (PCVD) (PCVD법에 의한 저마찰 DLC 코팅막 제조 및 특성 평가에 관한 연구)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Jeong, Jae-In;Yang, Ji-Hun;Park, Yeong-Hui;Heo, Gyu-Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.177-178
    • /
    • 2009
  • DLC (Diamond-like Carbon) 코팅막은 저마찰, 고경도, 낮은 표면조도 등의 우수한 특성을 갖는 박막 물질로 다양한 산업분야에서 그 코팅막의 활용을 목적으로 응용연구가 활발하게 이루어지고 있다. 본 연구에서는 플라즈마 화학기상증착(PCVD) 공정을 이용하여 바이어스, 진공도, 공정 온도 등의 코팅 조건 변수를 이용하여 DLC 코팅막을 제작하였다. 또한, 코팅막은 공정 조건에 따라 증착속도, 표면 및 단면 조직, 밀착력, 경도, 마찰계수 등의 특성을 평가하였다. 플라즈마 화학기상증착법을 이용한 DLC 코팅막 제조는 상온과 $175^{\circ}C$에서 이루어졌으며, 저온 중 DLC 코팅막 제조가 가능해짐에 따라 고분자 와 같은 저융점을 갖는 피처리물의 코팅처리가 가능하여 산업적 응용의 확대가 기대된다. SEM 표면 조직 관찰에 따른 DLC 코팅막의 표면조직과 조도는 공정조건에 따라 큰 차이는 보이지 않았지만, 밀착력에 있어서는 매우 큰 차이를 나타내었다. 스크래치 시험 결과 가장 높은 밀착력은 100 N 이상을 나타내었으며, 이 때의 마찰계수는 약 0.02를 나타내었다. 가장 낮은 마찰계수는 약 0.01을 보였으며, 이때의 밀착력은 25 N을 나타내었다. 증착속도는 바이어스 전압의 증가에 따라 증가하는 경향을 나타내었으며, 온도의 증가에 따라 감소하는 경향을 나타내었다.

  • PDF