• Title/Summary/Keyword: Synthesis of thin film

Search Result 286, Processing Time 0.025 seconds

Synthesis of Zinc Oxide Nano Rods, Sheet and Flower at $80^{\circ}C$ by the Sol-gel Method

  • Wahab, Rizwan;Ansari, S.G.;Kim, Y.S.;Dar, M.A.;Shin, H.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.676-677
    • /
    • 2006
  • Synthesis of zinc oxide nanorods, sheets and flower like structure were done by the sol-gel method using zinc acetate dihydrate and sodium hydroxide at $80^{\circ}C$ with 12 hours refluxing time nanorods, in case of as synthesized powder, with diameter of 20-60nm. Annealing at higher temperature (300 and $500^{\circ}C$,) in air ambient changes the morphology to sheet and flower like structure. The standard peak of zinc oxide was observed in IR at $523cm^{-1}$. The UV-VIS spectroscopy of zinc oxide shows a characteristic peak at 375nm.

  • PDF

Characteristics of Perovskite Solar Cell with Nano-Structured MoO3 Hole Transfer Layer Prepared by Hydrothermal Synthesis (수열합성법으로 제막한 MoO3 나노 구조체를 정공수송층으로 갖는 페로브스카이트 태양전지 특성분석)

  • Song, Jae-Kwan;Ahn, Joon-Sub;Han, Eun-Mi
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.81-86
    • /
    • 2020
  • MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 ℃ to 200 ℃ and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 ℃ to 200 ℃, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 ℃ and mass ratio of AMT : nitric acid of 1 : 12 wt%.

Synthesis and Absorption Spectra of 1,4-Diketo-3,6-Diphenyl-Pyrrolo-[3,4c]-Pyrrole (1,4-Diketo-3,6-Diphenyl-Pyrrolo-[3,4c]-Pyrrole(DPP)계 유기안료의 합성 및 흡수스펙트라)

  • 김성훈
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 1996
  • In this paper, the preparation of lead zirconium titanate(PZT) thin film by sol-gel processing was descried. Thin film coated with thickness of 4${\mu}{\textrm}{m}$ on the stainless steel substrates using the multiple spin-coating process. The crystalline phases of PZT powder and film were investigated by X-ray diffraction pattern and PZT thin film has perovskite structure over 600 C annealing temperature. Corona charging characteristics of the ferroelectric PZT thin film at 600 C were investigated by electrophotographic measurement. A difference in the charging characteristics between positive and negative corona charging was found. The charge acceptance depended in the polarity of corona and the poling of film. According to the D-E hysteresis measurment, PZT thin film can be poled by corona charging without use of top electrode. The remnant polarization in the PZT thin film is generally in the order of 48$\mu$C/$\textrm{cm}^2$. From this results, the ferroelectric PZT thin film will be possible to apply for the add-on type imaging formation.

  • PDF

A Study of CIGS Coated Thin-Film Layer using Doctor Blade Process (Doctor blade를 이용한 용액형 CIGS 균일 코팅에 관한 연구)

  • Yu, Jong-Su;Yoon, Seong Man;Kim, Do-Jin;Jo, Jeongdai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93.2-93.2
    • /
    • 2010
  • Recently, printing and coating technologies application fields have been expanded to the energy field such as solar cell. One of the main reasons, why many researchers have been interested in printing technology as a manufacturing method, is the reduction of manufacturing cost. In this paper, We fabricated CIGS solar cell thin film layer by doctor blade methods using synthesis of CIS precursor nanoparticles ink on molybdenum (Mo) coated soda-lime glass substrate. Synthesis CIS precursor nanoparticles ink fabrication was mixed Cu, In, Se powder and Ethylenediamine, using microwave and centrifuging. Using multi coating process as we could easily fabrication a fine flatness CIS thin-film layer ($0.7{\sim}1.35{\mu}m$), and reduce a manufacture cost and process steps. Also if we use printing and coating method and solution process in each layer of CIGS solar cell (electrode, buffer), it is possible to fabricate all printed thin-film solar cell.

  • PDF

Synthesis of Au Nanowires Using S-L-S Mechanism (S-L-S 성장기구를 이용한 양질의 골드 나노선 합성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun;Cho, Jin-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.922-925
    • /
    • 2012
  • Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.

THIN FILM SENSORS FOR AUTOMOBILE

  • Taga, Yasunori
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.459-466
    • /
    • 1996
  • A great amount of effort has been devoted to the constant improvement of such basic performance as dirvability, safety and enviromental protection. As a result, the total combination of various technologies has made it possible to produce safer and more comfortable automobiles. Among these technologies, plasma and thin film techniques are mainly cocerned with sensors, optics, electronics and surface modification. This paper first describes a concept of thin film processing in materials synthesis for sensors based on particle-surface interaction during deposition to provide a long life sensor applicable to sutomobiles. Some examples of parctical application of thin films to sensors are then given. These include(1) a thin films strain gauge for gravity sensors, (2) a giant magneto resistance film for speen sensors, and (3) a Magneto-impedance sensors fordetection of low magnetic field. Further progress of sophisticated thin film technology must be considered in detail to explore advanced thin film materials science and to ensure the field reliability of future sensor devices for automobile.

  • PDF