• 제목/요약/키워드: Synthesis Photoluminescence

검색결과 276건 처리시간 0.026초

A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite

  • Paul, Rima;Kumbhakar, Pathik;Mitra, Apurba K.
    • Advances in nano research
    • /
    • 제1권2호
    • /
    • pp.71-82
    • /
    • 2013
  • A simple chemical precipitation technique is reported for the synthesis of a hybrid nanostructure of single-wall carbon nanotubes (SWCNT) and titania ($TiO_2$) nanocrystals of average size 5 nm, which may be useful as a prominent photocatalytic material with improved functionality. The synthesized hybrid structure has been characterized by transmission electron microscopy (HRTEM), energy-dispersive X-ray analysis (EDAX), powder X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It is clearly revealed that nearly monodispersed titania nanocrystals (anatase phase) of average size 5 nm decorate the surfaces of SWCNT bundles. The UV-vis absorption study shows a blue shift of 16 nm in the absorbance peak position of the composite material compared to the unmodified SWCNTs. The photoluminescence study shows a violet-blue emission in the range of 325-500 nm with a peak emission at 400 nm. The low temperature electrical transport property of the synthesized nanomaterial has been studied between 77-300 K. The DC conductivity shows semiconductor-like characteristics with conductivity increasing sharply with temperature in the range of 175-300 K. Such nanocomposites may find wide applications as improved photocatalyst due to transfer of photo-ejected electrons from $TiO_2$ to SWCNT, thus reducing recombination, with the SWCNT scaffold providing a firm and better positioning of the catalytic material.

Optical and dielectric properties of SrMoO4 powders prepared by the combustion synthesis method

  • Vidya, S.;John, Annamma;Solomon, Sam;Thomas, J.K.
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.191-204
    • /
    • 2012
  • In this paper, we report on the obtention of nanocrystalline $SrMoO_4$ synthesized through modified combustion process. These powders were characterized by X-ray diffraction, Fourier Transform Raman and Infrared Spectroscopy. These studies reveal that the scheelite-type $SrMoO_4$ crystallizes in tetragonal structure with I41/${\alpha}$ (N#88) space group. Transmission electron microscopy image shows that the nanocrystalline $SrMoO_4$ powders have average size of 18 nm. The optical band gap determined from the UV-V is absorption spectra for the as prepared sample is 3.7 eV. These powders showed a strong green photoluminescence emission. The samples are sintered at a relatively low temperature of $850^{\circ}C$. The morphology of the sintered pellet is studied with scanning electron microscopy. The dielectric constant and loss factor values obtained at 5 MHz for a well sintered $SrMoO_4$ pellet has been found to be 9.50 and $7.5{\times}10^{-3}$ respectively. Thus nano $SrMoO_4$ is a potential candidate for low temperature co-fired ceramics and luminescent applications.

ZnO Nanoparticles with Hexagonal Cone, Hexagonal Plate, and Rod Shapes: Synthesis and Characterization

  • Kim, Sun-Young;Lee, In-Su;Yeon, Yun-Seon;Park, Seung-Min;Song, Jae-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1960-1964
    • /
    • 2008
  • The roles of coordinating ligands (TOPO, OA, HDA, and TDPA) for the synthesis of ZnO nanoparticles are investigated. Various shapes (hexagonal cone, hexagonal plate, and rod) and sizes (5-100 nm) of ZnO nanoparticles are prepared in relation to the coordinating ligands. The hexagonal shapes ($\leq$ 100 nm) are synthesized with TOPO and OA, while smaller size nanorods (5 ${\times}$ 30 nm) are with TOPO and TDPA. The relative intensities of two distinctive emission bands centered at 385 and 500 nm, which are related to the exciton and defect states, respectively, depend on the crystal qualities of ZnO nanoparticles affected by the coordinating ligands. The intense UV emissions with the reduced visible emissions are found in the monodisperse nanoparticles such as hexagonal cones and nanorods, suggesting that the monodispersity as well as the crystallinity is closely related to the coordinating ligands. The blue-shift of photoluminescence and absorption edge is observed in the nanorods, because the sizes of the nanorods are in the quantum confinement regime.

Synthesis of o-Xylene-Organosilicon Hybrid Polymer and Its Optical Properties

  • Choi, Jin-Kyu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.515-518
    • /
    • 2013
  • We present synthesis of a new kind of organic-inorganic hybrid polymer, poly xylene-hexamethyltrisiloxane hybrid (PXS) by a new synthetic way from o-xylene and 1,1,3,3,5,5-hexamethyltrisiloxane. The merged molecular structure of the two monomeric components for the PXS polymer was confirmed by $^{13}C$- and $^1H$-NMR, and FT-IR. Its optical absorption and emission properties were investigated by UV-vis absorption and photoluminescence (PL) spectroscopy. The PXS exhibits absorption at 265 nm which is the same with the o-xylene but tailing up to nearly 400 nm, which is maybe related the polymeric structure of the PXS. For the PL investigation, the PXS shows red-shift of the peak from 288 nm (o-xylene) to 372 nm in the case of excitation at 265 nm, at which both PXS and o-xylene have sufficiently high absorption for excitation. When 325-nm laser is used for excitation, the PXS shows a broader peak at 395 nm compared to the excitation at 265 nm and the o-xylene shows no luminescence probably due to the lack of absorption at 325 nm.

Se 전구체 함량 따른 CdSe 양자점 형광체의 발광특성 (Luminescent Characteristics of CdSe Quantum Dot Phosphor Depending on Se Precursor Ratio)

  • 엄누시아;김택수;좌용호;김범성
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.442-445
    • /
    • 2012
  • The quantum dots (QD) have unique electrical and optical properties due to quantum dot confinement effect. The optical properties of QDs are decided by various synthesis conditions. In a prior QDs study, a study on the QDs size with synthesis condition such as synthesis time and temperature is being extensively researched. However, the research on QDs size with composition ratio has hitherto received scant attention. In order to evaluate the ratio dependence of CdSe crystal, synthesis ratio of Se precursor is changed from 16.7 mol%Se to 44 mol%Se. As the increasing Se ratio, the band gap was increased. This is caused by red shift of emission. We confirmed optical property of CdSe QDs with composition ratio.

GaN 미세 분말의 합성과 특성 (Synthesis of GaN micro-scale powder and its characteristics)

  • 조성룡;여용운;이종원;박인용;김선태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.554-557
    • /
    • 2001
  • In this work, we had synthesis the GaN powder by direct reaction between Ga and NH$_3$at the temperature range of 1000∼1150$^{\circ}C$, and investigated the reaction condition dependence of the GaN yield and some properties of GaN powder. The synthesized powder had Platelet and prismatic shape and showed hexagonal crystalline structure with the lattice constants of a= 3.1895 ${\AA}$, c= 5.18394 ${\AA}$, and the ratio of c/a = 1.6253. The GaN powder synthesis processes were examined based on the oxidation process of mater, and found as combined with mass transport process for the initial stage and diffusion-limited reaction for the extended reaction.

  • PDF

Preparation and Photoluminescent Properties of Ca2PO4Cl Activated by Divalent Europium

  • Park, In Yong
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.63-67
    • /
    • 2016
  • Divalent europium-activated $Ca_2PO_4Cl$ phosphor powders were prepared by a chemical synthetic method followed by heat treatment in reduced atmosphere, and the crystal structures, morphologies and photoluminescence properties of the powders were investigated by x-ray powder diffraction, scanning electron microscope and spectrometer. The effect of Ca/P mole ratio at the starting materials on the final products was evaluated. The optimized synthesis condition obtained in this study was Ca/P mole ratio of 2.0. The present phosphor materials had higher photoluminescence intensity and better color purity than the commercial blue phosphor powders, $(Ca,Ba,Sr)_{10}(PO_4)_6Cl_2:Eu^{2+}$. The result of excitation spectrum measurement indicated that the excitation efficiency of the synthesized powders was higher for the long-wavelength UV region than that of the commercial phosphor. It was thus concluded that the samples prepared in this study can be successfully applied for the light-emitting devices such as LED excited with long-wavelength UV light sources.

염 보조 초음파 분무 열분해법을 이용한 ZrO2:Eu3+ 나노입자의 합성 및 발광 특성 (Synthesis and Photoluminescence Properties of ZrO2:Eu3+ Nanoparticles Using Salt-Assisted Ultrasonic Pyrolysis Process)

  • 황보영;임효령;이영인
    • 한국재료학회지
    • /
    • 제27권5호
    • /
    • pp.270-275
    • /
    • 2017
  • Inorganic phosphors based on $ZrO_2:Eu^{3+}$ nanoparticles were synthesized by a salt-assisted ultrasonic spray pyrolysis process that is suitable for industrially-scalable production because of its continuous nature and because it does not require expensive precursors, long reaction time, physical templates or surfactant. This facile process results in the formation of tiny, highly crystalline spherical nanoparticles without hard agglomeration. The powder X-ray diffraction patterns of the $ZrO_2:Eu^{3+}$ (1-20 mol%) confirmed the body centered tetragonal phase. The average particle size, estimated from the Scherrer equation and from TEM images, was found to be approximately 11 nm. Photoluminescence (PL) emission was recorded under 266 nm excitation and shows an intense emission peak at 607 nm, along with other emission peaks at 580, 592 and 632 nm which are indicated in red.