DOI QR코드

DOI QR Code

A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite

  • Paul, Rima (Acharya Prafulla Chandra College) ;
  • Kumbhakar, Pathik (Nanoscience Laboratory, Department of Physics, National Institute of Technology Durgapur) ;
  • Mitra, Apurba K. (National Institute of Technology)
  • Received : 2013.01.15
  • Accepted : 2013.06.01
  • Published : 2013.06.25

Abstract

A simple chemical precipitation technique is reported for the synthesis of a hybrid nanostructure of single-wall carbon nanotubes (SWCNT) and titania ($TiO_2$) nanocrystals of average size 5 nm, which may be useful as a prominent photocatalytic material with improved functionality. The synthesized hybrid structure has been characterized by transmission electron microscopy (HRTEM), energy-dispersive X-ray analysis (EDAX), powder X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It is clearly revealed that nearly monodispersed titania nanocrystals (anatase phase) of average size 5 nm decorate the surfaces of SWCNT bundles. The UV-vis absorption study shows a blue shift of 16 nm in the absorbance peak position of the composite material compared to the unmodified SWCNTs. The photoluminescence study shows a violet-blue emission in the range of 325-500 nm with a peak emission at 400 nm. The low temperature electrical transport property of the synthesized nanomaterial has been studied between 77-300 K. The DC conductivity shows semiconductor-like characteristics with conductivity increasing sharply with temperature in the range of 175-300 K. Such nanocomposites may find wide applications as improved photocatalyst due to transfer of photo-ejected electrons from $TiO_2$ to SWCNT, thus reducing recombination, with the SWCNT scaffold providing a firm and better positioning of the catalytic material.

Keywords

References

  1. Anderson, M., Osterlund, L., Ljungstrom, S. and Palmqvist, A. (2002), "Preparation of nanosize anatase and rutile $TiO_2$ by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol", J. Phys. Chem. B, 106, 10674-10679. https://doi.org/10.1021/jp025715y
  2. Appell, D. (2002), "Nanotechnology: wired of success", Nature, 419, 553-555. https://doi.org/10.1038/419553a
  3. Bechinger, C., Ferrer, S., Zaban, A., Sprague, J. and Gregg, B.A. (1996), "Photoelectrochromic windows and displays", Nature, 383, 608-610. https://doi.org/10.1038/383608a0
  4. Barrau, S., Demnot, P., Peigney, A., Laurent, C. and Lacabanne, C. (2003), "DC and AC conductivity of carbon nanotubes-polyepoxy composites", Macromolecules, 36(14), 5187-5194. https://doi.org/10.1021/ma021263b
  5. Byrappa, K., Dayananda, A.S., Sajan, C.P., Basavalinga, B., Shayan, M.B., Soga, K. and Yoshimura, M. (2008), "Hydrothermal preparation of ZnO:CNT and $TiO_2$:CNT composites and their photocatalytic applications", J. Mater. Sci., 43(7), 2348-2355. https://doi.org/10.1007/s10853-007-1989-8
  6. Diebold, U. (2003), "The surface science of titanium dioxide", Surf. Sci. Rep., 48(5-8), 53-229. https://doi.org/10.1016/S0167-5729(02)00100-0
  7. Kalbac, M., Frank, O., Kavan, L., Zukalova, M., Prochazka, J., Klementova, M. and Dunsch, L. (2007), "Heterostructures from single-wall carbon nanotubes and $TiO_2$ nanocrystals", J. Electrochem. Soc., 154(8), 19-24.
  8. Kongkanand, A., Dominguez, R.M. and Kamat, P.V. (2007), "Single wall carbon nanotube scaffolds for photoelectrochemical solar cells capture and transport of photogenerated electrons", Nano Lett., 7(3), 676-680. https://doi.org/10.1021/nl0627238
  9. Lee, J.C., Park, K.S., Kim, T.G., Choi, H.J. and Sung, Y.M. (2006), "Controlled growth of high-quality $TiO_2$ nanowires on sapphire and silica", Nanotechnology, 17, 4317-4321. https://doi.org/10.1088/0957-4484/17/17/006
  10. Park, N.G., Lagemaat, J.V.D. and Frank, A.J. (2000), "Comparison of dye-sensitized rutile and anatase-based $TiO_2$ solar cells", J. Phys.Chem. B, 104(38), 8989-8994. https://doi.org/10.1021/jp994365l
  11. Paul, R., Kumbhakar, P. and Mitra, A.K. (2010), "Synthesis and study of photoluminescence characteristics of carbon nanotube/ZnS hybrid nanostructures", J. Experi. Nanosc., 5(4), 363-373. https://doi.org/10.1080/17458080903583923
  12. Rao, A.M., Eklund, P.C., Bandow, S., Thess, A. and Smalley, R.E. (1997), "Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br", Nature, 388, 257-259. https://doi.org/10.1038/40827
  13. Rothschild, A., Levakon, A., Shapira, Y., Ashkenasy, N. and Komem, Y. (2003), "Surface photovoltage spectroscopy study of reduced and oxidized nanocrystalline $TiO_2$ films", Surf. Sci., 532-535, 456-460. https://doi.org/10.1016/S0039-6028(03)00154-7
  14. Satoh, N., Nakashima, T., Kamikura, K. and Amamoto, K. (2008), "Quantum size effect in $TiO_2$ nanoparticles prepared by finely controlled metal assembly on dendrimer templates", Nature Nanotechnology, 3, 106-111. https://doi.org/10.1038/nnano.2008.2
  15. Sumanasekera, G.U., Allen, J.L., Fang, S.L., Loper, A.L., Rao, A.M. and Eklund, P.C. (1999), "Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid", J. Phys. Chem. B, 103, 4292-4297. https://doi.org/10.1021/jp984362t
  16. Sung, Y.M. and Lee, J.K. (2004), "Controlled morphology and crystalline phase of poly (ethylene oxide)-$TiO_2$ nanohybrids", Cryst. Growth Des., 4, 737-742. https://doi.org/10.1021/cg049926z
  17. Sung, Y.M., Lee, J.K. and Chae, W.S. (2006), "Controlled morphology of nanoporous and core/shell structures titania photocatalyst particles", Cryst. Growth Des., 6, 805-808. https://doi.org/10.1021/cg050342m
  18. Suri, A., Chakraborty, A.K. and Coleman, K.S. (2008), "A facile solvent-free non-covalent and nondisruptive route to functionalize single-wall carbon nanotubes using tertiary phosphine", Chem. Mater., 3, 1705-1709.
  19. Syed, A.A. and Dinesan, M.K. (1991), "Review: polyaniline-a novel polymeric material", Talanta 38, 815-837. https://doi.org/10.1016/0039-9140(91)80261-W
  20. Tessler, N., Medvedev, V., Kazes, M., Kan, S.H. and Banin, U. (2002), "Efficient near-infrared polymer nanocrystals light-emitting diodes", Science, 295, 1506-1508. https://doi.org/10.1126/science.1068153
  21. Yao, Y., Li, G., Ciston, S., Lueptow, R.M. and Gray, K.A. (2008), "Photoreactive $TiO_2$/carbon nanotube composites: synthesis and reactivity', Environ. Sci. Technol., 42, 4952-4957. https://doi.org/10.1021/es800191n
  22. Yildiz, A., Lisesivdin, S.B., Kasap, M. and Mardare, D. (2007), "High temperature variable-range hopping conductivity in undoped $TiO_2$ thin film", Optoelectr. Adv. Mater., 1(10), 531-533.
  23. Zhao, Y., Liu, H., Wang, F., Liu, J., Park, K. and Endo, M. (2009), "A simple route to synthesize carbon nanotube/cadmium-sulfide hybrid heterostructures and their optical properties", J. Sol. State Chem., 182(4), 875-880. https://doi.org/10.1016/j.jssc.2009.01.001
  24. Zhao, Y., Hu, Y., Li, Y., Zhang, H., Zhang, S., Qu, L., Shi, G. and Dai, L. (2010), "Super-long aligned $TiO_2$/carbon nanotube arrays", Nanotechnology 21(505702), 1-7.

Cited by

  1. Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite vol.6, pp.3, 2017, https://doi.org/10.12989/amr.2017.6.3.245
  2. Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches vol.11, pp.2, 2013, https://doi.org/10.12989/anr.2021.11.2.115
  3. Nonlinear Behavior of Single Walled Carbon Nanotube Reinforced Aluminium Alloy Beam vol.69, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/jnanor.69.89