• Title/Summary/Keyword: Synchronous

Search Result 4,117, Processing Time 0.033 seconds

A study on design process of HTS bulk magnet synchronous motors

  • Jaheum Koo;JuKyung Cha;Jonghoon Yoon;Seungyong Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.1-4
    • /
    • 2024
  • This study explores the use of a bulk type high-temperature superconductors (HTS) as trapped field magnets in synchronous motors. A HTS bulk is examined for its ability to generate powerful magnetic fields over a permanent magnet and to eliminate the need for a direct power supply connection compared to a tape form of HTS. A 150 kW interior-mounted bulk-type superconducting synchronous motor is designed and analyzed. The A-H formulation is used to numerical analysis. The results show superior electrical performance and weight reduction when comparing the designed model with the conventional permanent magnet synchronous motor of the same topology. This study presents HTS bulk synchronous motor's overall design process and highlights its potential in achieving relatively high power density than conventional permanent magnet synchronous motor.

A Study on Counter Design using Sequential Systems based on Synchronous Techniques

  • Park, Chun-Myoung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.421-426
    • /
    • 2010
  • This paper presents a method of design the counter using sequential system based on synchronous techniques. For the design the counter, first of all, we derive switching algebras and their operations. Also, we obtain the next-state functions, flip-flop excitations and their input functions from the flip-flop. Then, we propose the algorithm which is a method of implementation of the synchronous sequential digital logic circuits. Finally, we apply proposed the sequential logic based on synchronous techniques to counter.

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim Kyeong-Hwa;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet (PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator, the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF, resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

An acoustical analysis of synchronous English speech using automatic intonation contour extraction (영어 동시발화의 자동 억양궤적 추출을 통한 음향 분석)

  • Yi, So Pae
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.97-105
    • /
    • 2015
  • This research mainly focuses on intonational characteristics of synchronous English speech. Intonation contours were extracted from 1,848 utterances produced in two different speaking modes (solo vs. synchronous) by 28 (12 women and 16 men) native speakers of English. Synchronous speech is found to be slower than solo speech. Women are found to speak slower than men. The effect size of speech rate caused by different speaking modes is greater than gender differences. However, there is no interaction between the two factors (speaking modes vs. gender differences) in terms of speech rate. Analysis of pitch point features has it that synchronous speech has smaller Pt (pitch point movement time), Pr (pitch point pitch range), Ps (pitch point slope) and Pd (pitch point distance) than solo speech. There is no interaction between the two factors (speaking modes vs. gender differences) in terms of pitch point features. Analysis of sentence level features reveals that synchronous speech has smaller Sr (sentence level pitch range), Ss (sentence slope), MaxNr (normalized maximum pitch) and MinNr (normalized minimum pitch) but greater Min (minimum pitch) and Sd (sentence duration) than solo speech. It is also shown that the higher the Mid (median pitch), the MaxNr and the MinNr in solo speaking mode, the more they are reduced in synchronous speaking mode. Max, Min and Mid show greater speaker discriminability than other features.

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

Direct Torque Control of a Synchronous Reluctance Motor Using the Finite Element Method

  • Lee Sang-Don
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.173-180
    • /
    • 2005
  • The construction of a Synchronous Reluctance Motor (SynRM) is simple and also highly economical because a stator from the existing AC motor can be used. Since the synchronous inductance in the Synchronous Reluctance Motor is an element that is proportional to torque, its exact value must be experimentally or analytically found for accurate control and performance development of the motor. In this paper, direct torque control (DTC) simulation is carried out to maximize the torque of the Synchronous Reluctance Motor and the fast response characteristics with the inductance value by the Finite Element Method (FEM). The response characteristics are compared through the proposed direct torque control and torque response characteristics that are based on the existing PI Control in order to confirm the fast response features. To test the performance of the direct torque controller, the torque response is analyzed with variable speed and load condition.

Fault Diagnosis Method of Permanent Magnet Synchronous Motor for Electrical Vehicle

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.413-420
    • /
    • 2016
  • The permanent magnet synchronous motor has high efficiency driving performance and high power density output characteristics compared with other motors. In addition, it has good regenerative operation characteristics during braking and deceleration driving condition. For this reason, permanent magnet synchronous motor is generally applied as a power train motor for electrical vehicle. In permanent magnet synchronous motor, the most probable causes of fault are demagnetization of rotor's permanent magnet and short of stator winding turn. Therefore, the demagnetization fault of permanent magnet and turn fault of stator winding should be detected quickly to reduce the risk of accident and to prevent the progress of breakdown of power train system. In this paper, the fault diagnosis method using high frequency low voltage injection was suggested to diagnose the demagnetization fault of rotor permanent magnet and the turn fault of stator winding. The proposed fault diagnosis method can be used to check the faults of permanent magnet synchronous motor during system check-up process at vehicle starting and idling stop mode. The feasibility and usefulness of the proposed method were verified by the finite element analysis.

Phase Shift Controlled GM ZVS-MRC with Synchronous Rectifier (동기 정류기를 이용한 위상 변위 제어 클램프 모드 포워드 다중 공진형 컨버터)

  • Song, Jong-Hwa;Kim, Chang-Sun;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2016-2019
    • /
    • 1997
  • To solve the low efficiency problem of low-voltage power supplies, it has been studied to replace the schottky barrier diode with the MOSFET synchronous rectifier. In this paper, Phase Shift-Controlled Clamp Mode Zero Voltage Switching-Multi Resonant Converter with Synchronous Rectifier (PSC CM ZVS-MRC with SR) is presented to achieve high efficiency in low-voltage power supplies. The characteristics analysis of synchronous rectifier is established by using the MOSFET equivalent circuit and efficiency comparison is established between the Synchronous Rectifier and the schottky barrier diode. To verify the validity of the analysis, 33W(3.3V, 10A) PSC CM ZVS-MRC with self-driven synchronous rectifier at switching frequency of 1MHz is designed and tested. And it is confirmed that the experimental results are well consistent with the theoretical results. The maximum efficiency of the converter is 83.4% at full load, which is 3.3% higher than conventional schottky diode rectification.

  • PDF

Clamp mode forward multi-resonant conveter with synchronous rectifier (동기 정류기를 이용한 클램프 모드 포워드 다중 공진형 컨버터)

  • 안강순;김희준
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.112-120
    • /
    • 1997
  • The clamp mode (CM) forward zero voltage switching multi resonant converter (ZVS-MPC) with self-driven synchronous rectifier is studied. The loss at the synchronous rectification stage of the converter is analyzed using MOSFET piecewise linear model and is compared with the loss at the conventional schottky diode rectification stage of th econverter. From the results of the analysis, it is known that the use fo MOSFETs as a synchronous rectifier reduces the loss at the rectification stage overthe whole load range comparing the use of schottky diodes as a conventional rectifier in the converter. In order to verify the validit of the analysis, we have built a 33W(3.3V/10A) CM forward ZVS-MRC with self-driven synchronous rectifier, in which switching frequency is 1MHz, and tested. FRom the experimental results, it is known that the synchronous rectification achieved about 1W improvement in the loss at the rectification stage and about 3% in the efficiency at the converter as compared with the conventional schottky diode rectification.

  • PDF

Design of Brushless Synchronous Motor with an Inverter Integrated Rotor (회전자 인버터 내장형 Brushless 동기 전동기 설계)

  • Do, Sang-Hwa;Lee, Byung-Hwa;Chae, Seung-Hee;Hong, Jung-Pyo;Jung, Eun-Soo;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.939-940
    • /
    • 2011
  • This paper deals with the design of a brushless synchronous motor with an inverter integrated rotor instead of a brush and a slip ring. It is designed for 80kW output power and compared with an induction motor and a permanent magnet synchronous motor of the same specifications. Brushless synchronous motor, induction motor and permanent magnet synchronous motor have the same amount of magnet flux density at an air gap. As a result, the brushless synchronous motor can be reduced volume of motor and power losses comparing to the induction motor.

  • PDF