• Title/Summary/Keyword: Synchronization error

Search Result 367, Processing Time 0.031 seconds

Robust frame synchronization algorithm in time-varying underwater acoustic communication channel (수중 음향통신에서 채널 시변동성에 강인한 프레임 동기 알고리즘)

  • Ko, Seokjun;Kim, Wan-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In this paper, we propose a frame synchronization algorithm for robust to the combined effects of large Doppler fluctuations and extended, time-varying multipath in the underwater acoustic communication. From the algorithm, we can recover a high timing error which is occurred from an acoustic propagation delay and uncertainty of oscillator between transmitter and receiver. In order to verify the performance of the synchronization algorithm, the lake trial results are used. The lake experiments are performed in a Gyeongcheonho located in Mungyeong-si, Gyeongsangbuk-do. We can see that the start position of frame is adjusted after the frame synchronization while the receiver moving.

Nonlinear Adaptive Control for Position Synchronization of a Gantry-Moving-Type Linear Motor (겐트리형 리니어 모터의 동기화를 위한 비선형 적응제어)

  • Han, Sang-Oh;Kim, In-Keun;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1925-1930
    • /
    • 2010
  • For high-speed/high-accuracy position control of a gantry-moving-type linear motor, we propose a nonlinear adaptive controller including a synchronization algorithm. Linear motors are easily affected by force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbances. Synchronization error is also caused by skew motion, model uncertainties, and force disturbance on each axis. Nonlinear effects such as friction and ripple force are estimated and compensated for. The synchronization algorithm is used to reduce the synchronous error of the two side pillars. The performance of the controller is evaluated via computer simulations.

Effect of System Instability Factors in a Bistatic MTI Radar Using Pulse Chasing Scan Method (펄스 체이싱 스캔 방식을 이용한 바이스태틱 MTI 레이더에서 시스템 불안정 요소들의 영향)

  • Yang, Jin-Mo;Han, Il-Tak;Lee, Yong-Suk;Lee, Min-Joon;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.299-311
    • /
    • 2011
  • In this paper, we have identified the system instability factors in a bistatic radar system using pulse chasing and considered their effects on the bistatic receiver's MTI(Moving Target Indication) improvement performance. The pulse chasing is a scan method that searchs a restricted area on the transmit pulse-to-pulse basis and the MTI filter is a signal processing that separates a target from some kinds of interferences such as clutter using small number of transmit pulses. Ideal MTI processing performance, e.g., clutter attenuation and improvement, has been limited by the property of the clutter itself, however, the MTI performance in a proposed bistatic receiver configuration could be affected by the receiving beam pointing error during pulse chasing scanning. Also, for the bistatic receiver, we have defined other system instability factors, which result from the time synchronization error, COHO's phase error, the frequency/phase synchronization error, and have analyzed their effects on the system performance improvement.

Firmware Design and system of stepwise synchronization for CMOS image sensor (Stepwise 동기화 지원을 위한 CMOS 이미지 센서 Firmware 설계 및 개발)

  • Park, Hyun-Moon;Park, Soo-Huyn;Lee, Myung-Soo;Seo, Hae-Moon;Park, Woo-Chool;Jang, Yun-Jung
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.199-208
    • /
    • 2008
  • Lately, since Complementary Metal Oxide Semiconductor(CMOS) image sensor system has low power, low cost and been miniaturized, hardware and applied software studies using these strengths are being carrying on actively. However, the products equipped with CMOS image sensor based polling method yet has several problems in degree of completeness of applied software and firmware, compared with hardware’s. CMOS image sensor system has an ineffective synchronous problem due to superfluous message exchange. Also when a sending of data is delayed continually, overhead of re-sending is large. So because of these, it has a problem in structural stability according to Polling Method. In this study, polling cycle was subdivided in high-speed synchronization method of firmware -based through MCU and synchronization method of Stepwise was proposed. Also, re-connection and data sending were advanced more efficiently by using interrupt way. In conclusion, the proposed method showed more than 20 times better performance in synchronization time and error connection. Also, a board was created by using C328R board of CMOS image sensor-based and ATmega128L which has low power, MCU and camera modules of proposed firmware were compared with provided software and analyzed in synchronization time and error connection.

  • PDF

Blind OFDM Synchronization Algorithm using Cyclic Correlation (순환상관(Cyclic Correlation)을 이용한 OFDM 시스템에서의 블라인드 동기 알고리즘)

  • Park Byungjoon;Ko Eunseok;Kang Changeon;Hong Daesik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.92-98
    • /
    • 2005
  • In this paper, blind synchronization algorithm is developed for estimating jointly timing and frequency offset of OFDM system. The proposed estimator exploits the second-order cyclostationarity of received signals, and then uses the information of symbol timing and carrier frequency offset appeared in the cyclic correlation. As a bling estimator, the information of impulse response of channel and training symbols are not required. The performance of the proposed method is consistent in spite of channel conditions in mean squre error sense, and simulation results prove it. For more accurate estimaion, the method that averages cyclic correlation is applied. In this case, the performance of averaging method is better.

Performance Analysis of Fine Frequency Synchronization Scheme in Mobile WiMAX Systems (Mobile WiMAX 시스템에서 미세 주파수 동기화 기법의 성능 분석)

  • Yang, Hyun;Jeong, Kwang-Soo;Lee, Kyeong-Il;Yi, Jae-Hoon;You, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.815-820
    • /
    • 2008
  • Carrier frequency offset (CFO) is one of the most important problems in an orthogonal frequency division multiplexing (OFDM) system, which seriously degrades the performance of the systems due to its time-variant behavior. In this paper, the performance of a pilot-assisted fine CFO estimator in OFDM-based mobile WiMAX systems is analyzed. Analytical closed-form expression of the mean square error (MSE) of the post-FFT based CFO synchronization scheme is reported for time-variant fading channels. Taking into account the frame structure of the IEEE802.16e standard, simulation results are used to verify the theoretical analysis developed in this paper.

Recognition of the Korean alphabet Using Neural Oscillator Phase model Synchronization

  • Kwon, Yong-Bum;Lee, Jun-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.315-317
    • /
    • 2003
  • Neural oscillator is applied in oscillatory systems (Analysis of image information, Voice recognition. Etc...). If we apply established EBPA(Error back Propagation Algorithm) to oscillatory system, we are difficult to presume complicated input's patterns. Therefore, it requires more data at training, and approximation of convergent speed is difficult. In this paper, I studied the neural oscillator as synchronized states with appropriate phase relation between neurons and recognized the Korean alphabet using Neural Oscillator Phase model Synchronization.

  • PDF

Performance Analysis of a Statistical CFB Encryption Algorithm for Cryptographic Synchronization Method in the Wireless Communication Networks (무선 통신망 암호동기에 적합한 Statistical CFB 방식의 암호 알고리즘 성능 분석)

  • Park Dae-seon;Kim Dong-soo;Kim Young-soo;Yoon Jang-hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1419-1424
    • /
    • 2005
  • This paper suggests a new cipher mode of operation which can recover cryptographic synchronization. First, we study the typical cipher modes of operation, especially focused on cryptographic synchronization problems. Then, we suggest a statistical cipher-feedback mode of operation. We define the error sources mathmatically and simulate propagation errors caused by a bit insertion or bit deletion. In the simulation, we compare the effects of changing the synchronization pattern length and feedback key length. After that, we analyze the simulation results with the calculated propagation errors. finally. we evaluate the performance of the statistical cipher-feedback mode of operation and recommand the implementation considerations.

T-S Fuzzy Model-Based Adaptive Synchronization of Chaotic System with Unknown Parameters (T-S 퍼지 모델을 이용한 불확실한 카오스 시스템의 적응동기화)

  • Kim, Jae-Hun;Park, Chang-Woo;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.270-275
    • /
    • 2005
  • This paper presents a fuzzy model-based adaptive approach for synchronization of chaotic systems which consist of the drive and response systems. Takagi-Sugeno (T-S) fuzzy model is employed to represent the chaotic drive and response systems. Since the parameters of the drive system are assumed unknown, we design the response system that estimates the parameters of the drive system by adaptive strategy. The adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. In addition, the controller in the response system contains two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples, including Doffing oscillator and Lorenz attractor, are given to demonstrate the validity of the proposed adaptive synchronization approach.

Intermedia Synchronization Protocol for Continuous Media Using MPEG-4 in Mobile Distributed Systems

  • Dominguez, Eduardo Lopez;Hernandez, Saul Eduardo Pomares;Gil, Pilar Gomez;Calleja, Jorge De La;Benitez, Antonio;Marin-Hernandez, Antonio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1689-1706
    • /
    • 2012
  • The preservation of temporal dependencies among a group of processes that exchange continuous media at runtime is a key issue for emerging mobile distributed systems (MDS), such as monitoring of biosignals and interactive multiuser games. Although several works are oriented to satisfy temporal dependencies, most of them are not suitable for MDSs. In general, an MDS is characterized by the absence of global references (e.g. shared memory and wall clock), host mobility, limited processing and storage capabilities in mobile hosts, and limited bandwidth on wireless communication channels. This paper proposes an asymmetric synchronization protocol to be used at runtime in an MDS without using a common reference. One main aspect of our synchronization protocol is that it translates temporal constraints to causal dependencies of the continuous media data as seen by the mobile hosts. We simulate the protocol by considering a cellular network environment and by using MPEG-4 encoders. The simulation results show that our protocol is effective in reducing the synchronization error. In addition, the protocol is efficient in terms of processing and storage costs at the mobile devices, as well as in the overhead attached per message across the wired and wireless channels.