DOI QR코드

DOI QR Code

Nonlinear Adaptive Control for Position Synchronization of a Gantry-Moving-Type Linear Motor

겐트리형 리니어 모터의 동기화를 위한 비선형 적응제어

  • Han, Sang-Oh (Dept. of Automotive Engineering, Hanyang Univ.) ;
  • Kim, In-Keun (Dept. of Automotive Engineering, Hanyang Univ.) ;
  • Huh, Kun-Soo (School of Mechanical Engineering, Hanyang Univ.)
  • Received : 2010.08.03
  • Accepted : 2010.10.11
  • Published : 2010.12.01

Abstract

For high-speed/high-accuracy position control of a gantry-moving-type linear motor, we propose a nonlinear adaptive controller including a synchronization algorithm. Linear motors are easily affected by force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbances. Synchronization error is also caused by skew motion, model uncertainties, and force disturbance on each axis. Nonlinear effects such as friction and ripple force are estimated and compensated for. The synchronization algorithm is used to reduce the synchronous error of the two side pillars. The performance of the controller is evaluated via computer simulations.

겐트리형 리니어 모터의 주행 축은 동기화가 필수적이며 그렇지 못할 경우에는 위치의 어긋남이나 불안정한 동작으로 인해 동기오차가 발생하며 이는 고속 고정밀 선형운동에 악영향을 미친다. 또한 두 리니어모터의 축은 로터리 모터와 달리 동력 전달장치를 제거함으로 인해 모델의 불확실성이나 외란에 민감할 뿐만 아니라 마찰과 리플의 특성에 쉽게 영향을 받는다. 본 논문은 겐트리형 리니어 모터의 주행 축을 대상으로 위치제어에 악영향을 주는 대표적인 비선형 함수인 마찰력과 리플력을 추정하여 보상하며 두 축간의 동기오차를 줄이기 위해 동기제어 알고리즘을 설계하였다. 제안된 비선형 적응제어기는 모의실험을 통하여 성능을 검증하였다.

Keywords

References

  1. Tan, K. K., Huang, S. N. and Lee, T. H., 2002, “Robust Adaptive Numerical Compensation for Friction and Force Ripple in Permanent-Magnet Linear Motor,” IEEE Transactions on Magnetics, Vol. 38, No.1, pp. 221-228. https://doi.org/10.1109/20.990111
  2. Yao, B. and Xu, L., 2002, “Adaptive Robust Motion Control of Linear Motors for Precision Manufacturing,” Mechatronics, Vol. 12, pp. 595-616. https://doi.org/10.1016/S0957-4158(01)00008-3
  3. Kim, H. B., Lee, B. H. Han, S. H. and Huh, K. S, 2005, “Nonlinear Adaptive Control for Linear Motor Through the Estimated Friction Force and Force Ripple,” KSME International Journal, No.05S201, pp.1144-1149.
  4. Koren, Y. and Lo, C. C., 1992, “Variable-gain Cross- Coupling Controller for Contouring,” Annals of the CIRP, Vol. 40, No. 1, pp. 371-374. https://doi.org/10.1016/S0007-8506(07)62009-5
  5. Han, S. H. and Huh, K. S., 2010 “Position Control of Linear Motor by Using Enhanced Cross-Coupling Algorithm,” KSME-A.2010.34.3.369, pp.369-374.
  6. Shen, S. L., Liu, H. L., and Ting, S. C., 2002, “Contouring Control of Biaxial Systems Based on Polar Coordinates,” IEEE/ASME Transactions on Mechatronics, Vol. 7, No. 3, pp. 329-345. https://doi.org/10.1109/TMECH.2002.802723
  7. Kobatashi, H. and Inagaki. H. 1992, “A Synchronizing Control for Hexapod Walking Robot,” IEEE/RSJ Int. Conf. Om Intelligent Robots and Systems, pp. 569-573.
  8. Sun, D. and Mills, J. K., 2002, “Adaptive Synchronized Control for Coordination of Multirobot Assembly Tasks,” IEEE Trans. On Robotics and Automation, Vol. 18, No. 4, pp. 498-510. https://doi.org/10.1109/TRA.2002.802229
  9. Sun, D. and Mills, J. K., 2002, “Adaptive Synchronized Control for Coordination of Two Robot Manipulators,” Proceeding of the 2002 IEEE International Conference on Robotics & Automation, pp. 976 -981.
  10. Backman, M, 2000, “Comparison of Linear and Rotary Servo Motor Systems,” Small Motors and Motion Association, 2000 Fall Technical Conference.