• Title/Summary/Keyword: Symmetric Mode

Search Result 272, Processing Time 0.023 seconds

Detection of Defects in a Thin Steel Plate Using Ultrasonic Guided Wave (유도초음파를 이용한 박판에서의 결함의 검출에 관한 연구)

  • Jeong, Hee-Don;Shin, Hyeon-Jae;Rose, Joseph L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.6
    • /
    • pp.445-454
    • /
    • 1998
  • In order to establish a technical concept for the detection of defects in weldments in thin steel plate, an experimental and theoretical investigation was carried out for artificial defects in a steel plate having a thickness of 2.4mm by using the guided wave technique. In particular the goal was to find the most effective testing parameters paying attention to the relationship between the excitation frequency by a tone burst system and various incident angles. It was found that the test conditions that worked best was for a frequency of 840kHz and an incident angle of 30 or 85 degrees, most of the defects were detected with these conditions. Also, it was clear that a guided wave mode generated under an incident angle of 30 degrees was a symmetric mode, So, and that of 85 degrees corresponded to an antisymmetric mode, Ao. By using the two modes, most of all of the defects could be detected. Furthermore, it was shown that the antisymmetric mode was more sensitive to defects near the surface than the symmetric mode. Theoretical predictions confirmed this sensitivity improvement with Ao for surface defects because of wave structure variation and energy concentration near the surface.

  • PDF

Collapse of Thin-Walled Hatted Section Tubes (박판 상형 부재의 붕괴 특성연구)

  • Kim, C.W.;Han, B.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 1994
  • Collapse characteristics of thin-walled hatted section tubes are investigated. The square section members with flanges are substituted by the equivalent rectangular tube. The stiffening effects of flanges are transformed to the restraining plate with the equivalency of buckling strength. The square tubes of single-hatted and double-hatted sections are investigated. The double-hatted section members show symmetric and antisymmetric crushing modes depending on the stiffness of flanges. The single-hatted section members show only symmetric modes. The bifurcation point of the compact crushing modes are investigated by experiments and shown almost same thickness-width ratio of the rectangular tubes. A large maximum crippling strength can be obtained by double-hatted section members with proper flange dimensions.

  • PDF

Application of Davidenko's Method to Rigorous Analysis of Leaky Modes in Circular Dielectric Rod Waveguides

  • Kim, Ki-Young;Tae, Heung-Sik;Lee, Jeong-Hae
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.199-206
    • /
    • 2003
  • Numerical solutions to complex characteristic equations are quite often required to solve electromagnetic wave problems. In general, two traditional complex root search algorithms, the Newton-Raphson method and the Muller method, are used to produce such solutions. However, when utilizing these two methods, the choice of the initial iteration value is very sensitive, otherwise, the iteration can fail to converge into a solution. Thus, as an alternative approach, where the selection of the initial iteration value is more relaxed and the computation speed is high, Davidenko's method is used to determine accurate complex propagation constants for leaky circular symmetric modes in circular dielectric rod waveguides. Based on a precise determination of the complex propagation constants, the leaky mode characteristics of several lower-order circular symmetric modes are then numerically analyzed. In addition, no modification of the characteristic equation is required for the application of Davidenko's method.

Design of Slim Actuator with Symmetric Electromagnetic Circuit (대칭형 자기회로를 갖는 슬림형 엑추에이터의 설계)

  • Woo, Jung-Hyun;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su;Oh, Young-Se;Kim, Ki-Beom
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Researches for actuator which is appropriate to slim optical disk drive (ODD) have been progressed for a long time. Various types of actuators are suggested to secure high performances with slim thickness. In this paper, the slim actuator with symmetric electromagnetic (EM) circuit is suggested to apply slim ODD. Various EM circuits are proposed to increase EM force in the focusing and the tracking directions. Flexible mode frequencies and driving sensitivities are increased by using stress distribution and design of experiment (DOE). Consequently, final model is suggested to have high flexible mode frequencies and driving sensitivities.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

Dynamic Stability and Semi-Analytical Taylor Solution of Arch With Symmetric Mode (대칭 모드 아치의 준-해석적 테일러 해와 동적 안정성)

  • Pokhrel, Bijaya P.;Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.83-91
    • /
    • 2018
  • In this study, we investigated the dynamic stability of the system and the semi-analytical solution of the shallow arch. The governing equation for the primary symmetric mode of the arch under external load was derived and expressed simply by using parameters. The semi-analytical solution of the equation was obtained using the Taylor series and the stability of the system for the constant load was analyzed. As a result, we can classify equilibrium points by root of equilibrium equation, and classified stable, asymptotical stable and unstable resigns of equilibrium path. We observed stable points and attractors that appeared differently depending on the shape parameter h, and we can see the points where dynamic buckling occurs. Dynamic buckling of arches with initial condition did not occur in low shape parameter, and sensitive range of critical boundary was observed in low damping constants.

Multi-directionally Movable Lambda Shape Transducer for Ultrasonic Motor (초음파 모터용 람다형 다방향 변환자)

  • Do, Young-Soo;Nam, Hyo-Duk;Kim, Young-Duk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • The transducer for multi-directionally movable ultrasonic motor having lambda shaped vibrators has been proposed and designed. The two branches cross at a right angle with each other at the tip. FEM analyses of lambda shaped transducer were carried out to find vibration modes for ultrasonic motor. The lambda shaped transducer has one symmetric mode and two anti-symmetric modes. The symmetric mode generates the normal direction motion of the tip. The lateral and vertical direction motion of the tip are excited by two anti-symmetric modes. The normal and lateral direction motions made an lateral elliptic trajectory. And the normal and vertical direction motions made an vertical elliptic trajectory normal to previous one. The transducer with 1 mm in thickness and 25 mm in length has been fabricated and evaluated. The resonance frequencies of the transducer was 32 kHz and 103 kHz. The tangential and vertical vibration displacement of the transducer having the lateral elliptic trajectory were $1.5{\mu}m\;and\;1.1{\mu}m$, respectively at the driving voltage of 100 Vpp and frequency of 32 kHz and 103 kHz. And the tangential and vertical vibration displacement of the transducer having the vertical elliptic trajectory were $0.4{\mu}m\;and\;0.2{\mu}m$, respectively at the same driving condition.

Solution of higher order mode cutoff frequencies in TEM cells by Galerkin method (Galerkin 법을 적용한 TEM cell들의 고조 모드 차단 주파수 해석)

  • 윤재훈;이혁재;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1885-1894
    • /
    • 1999
  • The higher mode cutoff frequencies in Crawford TEM cells computed by the Galerkin method(GM) describe in this paper. The authors also report the half mode boundaries to solve not only the cut-off frequencies of symmetric TEM cells and those of asymmetric TEM cells. It is shown that the measured resonant frequencies of the present symmetric TEM cells and a designed asymmetric TEM cell are agreed with the calculated results.

  • PDF