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Application of Davidenko’s Method to Rigorous Analysis of Leaky
Modes in Circular Dielectric Rod Waveguides

Ki Young Kim*, Heung-Sik Tae* and Jeong-Hae Lee**

Abstract - Numerical solutions to complex characteristic equations are quite often required to solve
electromagnetic wave problems. In general, two traditional complex root search algorithms, the New-
ton-Raphson method and the Miiller method, are used to produce such solutions. However, when util-
izing these two methods, the choice of the initial iteration value is very sensitive, otherwise, the itera-
tion can fail to converge into a solution. Thus, as an alternative approach, where the selection of the
initial iteration value is more relaxed and the computation speed is high, Davidenko’s method is used
to determine accurate complex propagation constants for leaky circular symmetric modes in circular
dielectric rod waveguides. Based on a precise determination of the complex propagation constants, the
leaky mode characteristics of several lower-order circular symmetric modes are then numerically ana-
lyzed. In addition, no modification of the characteristic equation is required for the application of

Davidenko’s method.

Keywords: circular dielectric rod waveguide, circular symmetric modes, Davidenko’s method, leaky mode.

1. Introduction

Leaky waves have recently received much attention, as
they play a significant role in numerous antenna applica-
tions [1] and microwave/millimeter-wave integrated
circuits [2], while also explaining a variety of physical
phenomena, such as Wood’s anomalies [3], Smith—Purcell
Radiation [4], Cerenkov radiation [5], prism coupling [6],
and so on. In particular, leaky waves in micro-
wave/millimeter-wave integrated circuits have been exten-
sively studied for over a decade, including the analysis of
leakage effects and the discovery of their novel physical
phenomena (see, for example, [2] and references therein).
These two aspects of leaky mode studies strongly depend
on the determination of the complex propagation constant,
as the phase and attenuation constants involved in the
complex propagation constant are two of the most impor-
tant parameters revealing the properties of leaky waves.
Accordingly, an accurate determination of the phase and
attenuation constants is crucial prior to the analysis of
leaky modes for specific guiding structures.

Since a complex characteristic equation cannot be solved
analytically, traditional complex root search algorithms,
such as the Newton-Raphson method or the Miiller method
[7], have been utilized to obtain the complex roots for a
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complex characteristic equation. However, these iterative
methods require a careful selection of the initial starting
point for iteration. If the initial values are not chosen prop-
erly, the iteration fails. As an alternative approach, Davi-
denko’s method has been successfully applied to the dis-
persion analysis of guided waves, such as lossy moving
waveguides [8], lossy nonlinear waveguides [9], lossy
waveguides including gyrotropic media [10], surface plas-
mon polaritons [11], a cylindrical substrate-superstrate
layered medium [12], surface-wave modes in microstrip
antennas [13], and so on. Since Davidenko’s method has
the advantage of being more relaxed in regards to selection
of the initial values, it is anticipated that it can also be
applied to the analysis of leaky modes when using a com-
plex propagation constant. Furthermore, the current authors
have already reported a brief analysis of the leaky TM
mode of a circular dielectric rod using Davidenko’s
method [14].

Accordingly, the current paper uses Davidenko’s method
to determine the zeros of a complex characteristic equation
applicable to the analysis of leaky modes for various guid-
ing structures. For example, accurate normalized phase and
attenuation constants for the circular symmetric modes
(TMy, and TE, modes) of a circular dielectric rod
waveguide are efficiently obtained when using Davi-
denko’s method. In addition, the leaky mode characteristics
of this structure, which are relatively unknown compared
to those of microwave/millimeter-wave integrated circuits,
are analyzed, and the difference in the leaky mode between
the TM,, and TE,, modes are discussed based on a precise
determination of the normalized phase and attenuation con-
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stants.

2. Review of Davidenko’s Method

In principle, Davidenko’s method transforms a set of n-
coupled nonlinear algebraic equations with » unknowns
into a set of n-coupled first-order ordinary differential
equations with a scalar dummy variable. As the dummy
variable approaches infinity, each unknown approaches a
true value. It should be noted that Davidenko’s method can
only be applied to analytic functions. The following is a
brief review of Davidenko’s method. First, starting with the
Newton-Raphson scheme, let F(x)=0 be a nonlinear
algebraic equation where x is a root of this equation. In the
Newton-Raphson method [7], the (rn+1)th approximation of
the root x of the equation F(x)=0 is as follows:

___ F(x)
‘xn+1 - xn dF(xn) (1)
dx
Equation (1) can be written as:
dF(x F(x F(x
) __ F(x) __ Fx) @

dx Xpy1 — Xy Axn
where Ax, =x,,, —x, is the nth correction term between
the (n+1)th and nth approximations. If dF(x,)/dxis too

small, the nth correction term may diverge, meaning that
the Newton-Raphson method will fail [10, 13]. This weak
point in the Newton-Rhapson method is particularly seri-
ous when the value of the initial guess ( x, ) is far from the
root x of the given equation. Without loss of generality, if a
small positive quantity factor, £ (0<& <1) is included
in (2), failure of the Newton-Raphson method can be
avoided, and the modified form of (2) is as follows:

3

dF(x,) _ F(xn)g
dx  Ax,
As such, even when the right hand side of (3) becomes
small due to the small value of dF(x,)/dx, the resultant
small value on the right hand side can be mainly weighted
to the factor £ so that the correction term Ax, does not
have a large value. Consequently, the iteration will not fail,
which is the essential feature of Davidenko’s method.
When taking the limit of both sides in (3) as £ — 0, the

nth correction term Ax, and factor £ change into

dx and dt, respectively. Thus, (3) becomes

dF(x)__F(x)
dx  dx

dt )

where ? is a scalar dummy variable independent of x. Rear-
ranging and manipulating (4) as

dx F(x) _ dx

@ dF®)  dnF@)] )
dx
then, equating the denominators of both sides in (5) as
dt =—d[ln F(x)] (6)
and integrating both sides of (6),
[dt=—[dln Fl=-n F(x)+C, (7
In F(x)=~t+C, ¥

where C, and C, are arbitrary integration constants, fi-
nally produces:

F(x)=Ce™ 9)

where C is also an arbitrary integration constant. There-
fore, F(x) =0 is the independent scalar dummy variable
when ¢ approaches infinity, as mentioned previously.
Although the above procedure can also be applied to the
generai n-dimensional case [10], the current study focuses
on the two-dimensional case of Davidenko’s scheme, since
the complex characteristic equation of leaky modes has
two unknowns, ie., normalized phase and attenuation
constants, which will be explained later. If the function
F(x) and its root x are considered as a complex analytic

function and complex variable, ie., F(x)=Re{F(x)}
+jIm{F(x)}and x=a+ jb, respectively, the first equality

of (5) can be written as follows:

& _ ~J'F(x) (10
dt

where J is a Jacobian matrix of the form

Re { aI;(x) } Re {___GI;(bx) }
J= “ (1)

I {BF(x)} Im {aF(x)}
da ob
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Since the function F(x) is assumed to be analytic, the total
derivative of F(x) with respect to x can be expressed

using a Cauchy-Riemann relation as follows:

_OF(x) . [oF(x)] , . {aF(x)}
Fx= ox —Re{ da }+]Im da

e T g [0 ,
—Re{ » } ]Re{ b } (12)

Thus, the following relations are obtained:

Re{F,(x)}= Re{aF (")}

da
BF(x)}
db

(13)

Im{F,(x)} = —Re{

Using (11), (12), and (13), the inverse form of the Jacobian
matrix in (10) is

a1 {Re{Fx(x)} —Im{Fx(x)}} 14

detJ |Im{F,(x)} Re{F.(x)}

with

2 2
detJ = Re{aF(x)} + Re{a—F(x—)} =
da b

Since the real and imaginary terms of the complex root x

F(of as)

and complex function F(x) can be expressed as the fol-

lowing column vectors, respectively:

a
x-—_[b} (16)

Re{F(x)}:I

17
Im{F(x)} a7

F(x)=l:

equation (10) can be expressed in a matrix form as follows:

dH By [ Re{F, () hn{FAx)}}[Re{F(")}} as)

dr|b]” R -Im{F,(0} Re{F, (0} m{F(x)}

Finally, Davidenko’s expression of a two-coupled first-
order ordinary differential equation with an independent
scalar variable ¢ is obtained as follows:

da __Re{F()}Re{F,(0)}+Im{F(x)}m{F,(x}

dt F.(0| 19
db _ Re{F(x)}Im{F,(x)}-Im{F(x)}Re{F,(x)}
dt F.f

The existence of the total derivative of F(x) with respect
to x, i.e., F (x) is a necessary condition for deriving
Davidenko’s expression, which means that the complex
function F(x) should be analytic. In other words, Davi-

denko’s method can only be applied to an “analytic” char-
acteristic function, as mentioned previously.

3. Application of Davidenko’s Method to the
Complex Characteristic Equation of a
Circular Dielectric Rod Waveguide

Fig. 1 shows a cross-sectional view of the circular
dielectric rod waveguide employed in the current work.
Region 1 (0 < p < r) is a dielectric region where the mag-
netic and dielectric constants are u,, and &, , respec-
tively, whereas region 2 (p >r) is a free space region
where the magnetic and dielectric constants are u,,and

€., , respectively. In the current study, the magnetic con-
stant and the dielectric constant in region 2 are assumed to
be in unity. The electric and magnetic axial field compo-
nents of the circular symmetric modes (TMy, and TE,,
modes) in each region can be expressed as follows:
{Ezl = AOnJo(k1P)eXP[J:(wt_YZ)] 0<p<r (20)
H, = B,,J (kp)expl j(wt—yz)]

_ 2) ; —
{E12 = Co,,Ho (kzp)exp[.](wt Y2)] p>r (1)

H,, =D, H” (k,p)expl j(wr —yz)]

where Jjand H_” are zero order Bessel and Hankel func-

tions of the first and second kind, respectively, T is the an-
gular frequency, Ag,, Bos, Con, and Dy, are complex ampli-
tude constants, the subscript On denotes a circular symmet-
ric mode, ie., TMy, or TE;, mode, and k; and k, are the
complex transverse propagation constants in regions 1 and
2, respectively, and related to the complex axial propaga-
tion constant y(= 8 — jor) as follows:

kP =kop.e, =y (i=12) (22)
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Fig. 1 Cross-sectional view of a circular dielectric rod
waveguide.

Here, k; is the free space wave number. The normalized
complex transverse and axial propagation constants can be
respectively defined as follows:

Refk;}+ jIm{k;} _ Re{ki}+ Im{k; }
k, Tk, Tk

k) [k T
Re{z}.}.}. ]hn{zo-} = Re{k,.}+ ]Im{k,.} (23)

1

Fok_
kO

_ Y B-jo B a 5 ._
=—= =——j—=p-jx 24
Y PR K ]ko B-J (24)

In (24), B and & are the normalized phase and attenua-

tion constants, respectively.
Substituting (23) and (24) into (22), produces the follow-
ing relation [15]:

(RefR) -(mfE) e B a
Re{k }Im{k } = B&

For the TM,, mode (E, #0 and H, =0), the constants

By, and Dy, are chosen to be zero in (20) and (21). At the
boundary p =r, the tangential field components in each

region must be continuous, thereby resulting in a set of si-
multaneous equations with two unknowns as follows:

Jokr)  =HP(k,r) 4

=0 26
‘2" J, (k1) —%H}z’(kzr) [CO"] (26)
1 2

The determinant of (26) must vanish to avoid a nontrivial
solution, resulting in the following characteristic equation
for the TM;;,, mode:

£y J, (k) _ € Hm(k r)
k, J,(kr) kK, H(z’(k r)

o) = =0 27

Similarly, for the TEy, mode (E, =0 and H, #0), the
characteristic equation obtained is identical to that for the
TM,, mode, except for the material constants. Since the
characteristic equation (27) cannot be solved analytically,
Davidenko’s method is used to obtain the normalized com-
plex propagation constants satisfying (27).

By simply interchanging the complex root x in (16) and
complex function F(x)in (17) with the normalized com-
plex propagation constant ¥ ' in (24) and complex charac-
teristic function Q(¥)in (27), respectively, Davidenko’s

expression of the complex characteristic equation of this
structure is obtained as follows:

df _ Re{OM}Re{0, ()} +Im{0@)}im{Q, 7)}

di o, 28)
da _Refo}im{o, (1)} -m{0@)}Re{Q, M}
dt lo, @[

This is a two-coupled first-order ordinary differential
equation with two unknowns, B and &, and an inde-

pendent scalar dummy variable, . In the current study, the
set of equation (28) was implemented with the help of an
internal function, “NDSelve” (based on the Runge-Kutta
algorithm), from the software package MATHEMATICA
4.0 [16] and numerically solved, implying that the explicit
analytic form of the complex characteristic function, Q(¥)

and its total derivative, O, (¥) are not required, even when

the analytic forms exist. The resulting normalized phase
and attenuation constants are then substituted into the
original characteristic function Q(¥) in (27). The toler-

ances of the resulting values are checked by comparing
them with the zeros for both the real and imaginary parts.
For the procedure of solving (28), when ¢ is set larger, the
tolerance can have a smaller value, yet it takes longer to
converge, therefore, the tolerance was arbitrarily set at
107" for both the real and imaginary parts. The normal-
ized complex axial propagation constants are then utilized
to obtain the normalized complex transverse propagation
constants for each region using (22). The resulting complex
axial and transverse propagation constants also satisfy the
set of (25) and conditions for forward leaky waves, that is,

B>0, @>0, Re{k}>0,and Im{k}>0[15].

'Here, for simplicity, the normalized complex axial propagation constant
¥ is assumed to be B+ j& when deriving Davidenko’s expression of
(28). The resulting normalized attenuation constant for the leaky mode has
a negative value, yet the normalized attenuation constant in (24) has a
positive value. Therefore, a “~” sign needs to be included in the normal-
ized attenuation constant obtained by Davidenko’s expression of (28).
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Fig. 2 (a) Normalized phase constant and (b) normalized
attenuation constant of circular dielectric rod
waveguide for four lower-order TM,;, modes.
Arrows in (a) depict the cutoffs of the guided modes

(e,,=10.0 and r=10.0mm).
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Fig. 3 (a) Normalized phase constant and (b) normalized
attenuation constant of a circular dielectric rod
waveguide for four lower-order TE,,, modes. Arrows
in (a) depict the cutoffs of the guided modes.
(g,=100 and r=10.0mm)

4. Numerical Results and Leaky Mode Analysis of
the Circular Dielectric Rod Waveguide

Figs. 2 and 3 show the normalized phase and attenuation
constants of a circular dielectric rod waveguide for four
lower-order TM,,, and TE,, modes, respectively. The radius
and dielectric constant of the rod were arbitrarily chosen to
be 10.0mm and 10.0, respectively. As shown in Figs. 2 (a)
and 3 (a), there were no crossing points among the normal-
ized phase constants for the 7M,, mode, whereas there
were several crossing points for the TE;, mode. As regards
the curves of the normalized attenuation constants in Figs.
2 (b) and 3 (b), there were no crossing points among the
modes. The arrows shown in Figs. 2 (a) and 3 (a) depict the
borders between the guided and leaky modes, i.e., cutoff
frequencies of the guided mode. In the guided mode region
(above cutoff frequency), the normalized attenuation
constants were zeros, since the dielectric material in the
current study was assumed to have a real constant. As the
frequencies decreased from the cutoff frequency for the
guided mode, nonzero values were introduced for the nor-
malized attenuation constants, implying the commence-
ment points of the leaky mode. Here, the normalized at-
tenuation constant was not derived from material loss but
rather from leakage of the guided propagating power into
the free space. The cutoff frequencies for the 7M,, and
TE,, modes were identical, i.e. 3.827, 8.785, 13.773, and
18.767 GHz for the first, second, third, and fourth modes,
respectively. In the leaky mode region, several distinct
modes were observed that exhibited their own unique
properties. As shown in Figs. 2 (a) and 3 (a), as the fre-
quency decreased from the cutoff frequency, the normal-
ized phase constant decreased to a minimum point and then
increased again until it exceeded unity and grew rapidly to
infinity. Whereas, the normalized attenuation constant in
Figs. 2 (b) and 3 (b) increased monotonically with a de-
crease in the frequency. In a lower frequency region, once a
normalized phase constant exceeds unity, it becomes
physically meaningless [17]. From Figs. 2 (a) and 3 (a), the
upper limits of the nonphysical frequency regions of the
TM,, modes shifted toward lower frequencies as the modes
became higher. The resulting nonphysical frequency re-
gions were decreased, while those of the TE,, modes were
increased. More detailed numerical data are listed in Tables
1 and 2 for the TM,, and TE,;, modes, respectively. In the
frequency region higher than the nonphysical frequency
region, a normalized phase constant below unity is physi-
cally meaningful. This frequency region is divided into two

distinct regions; a reactive mode region ( B <1 and
B < &), where the energy of the wave is stored as a form

of reactive energy, and an antenna mode region (J <1
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Table 1 Spectral ranges (and widths) of leaky TM,, mode.

Application of Davidenko’s Method to Rigorous Analysis of Leaky Modes in Circular Dielectric Rod Waveguides

Nonphysical . Guided mode
Mode mode Reactive mode 1st Antenna mode Spectral gap 2nd Antenna mode cutoff
0-0.850 GHz 0.850-1.000 GHz . . 1.000-3.827 GHz
™o (0.850 GHz) (0.150 GHz) Unavailable Unavailable (2.827 GHz) 3.827 GHz
0. | 0-0486 GHz | 0.486-6.027 GHz 6.027-6.590 GHz 6.590-6.944 GHz 6944-8785GHz | ¢ oo on
22 [ (0.486 GHz) (5.541 GHz) (0.563 GHz) (0.354 GHz) (1.841 GHz) ’ z
M, | 0-0481GHz | 0481-10.785GHz | 10.785-11.636 GHz | 11.636-12.522GHz | 12.522-13.773GHz | 13725 oy
%1 (0.481 GHz) (10.304 GHz) (0.851 GHz) (0.886 GHz) (1.251 GHz) ’ z
v, | 0-0480GHz | 0480-1550GHz | 15520-16.698GHz | 16.698-17.821 GHz | 17.821-18.767 GHz | o o
% | (0.480 GHz) (15.040 GHz) (1.178 GHz) (1.123 GHz) (0.946 GHz) ) z
Table 2 Spectral ranges (and widths) of leaky TE,, mode.
Mode Nonphysical mode Reactive mode Antenna mode Guided mode cutoff
0-3.170GHz . 3.170-3.827 GHz
TE,; (3.170 GHz) Unavailable (0.657 GHz) 3.827 GHz
0-6.170 GHz 6.170-7.896 GHz 7.896-8.785 GHz
TEq; (6.170 GHz) (1726 GHz) (0.889 GHz) 8.785 GHz
0-7.198 GHz 7.198-12.789 GHz 12.789-13.773 GHz
TEq; (7.198 GHz) (5.591 GHz) (0.984 GHz) 13773 GHz
0-7.989 GHz 7.989-17.601 GHz 17.601-18.767 GHz
TEos (7.989 GHz) (9.612 GHz) (1.166 GHz) 18767 GHz
and B > @& ), where the energy of the guided wave is con- 1.06 J
tinuously leaked into the free space [18]. As listed in Ta-
bles 1 and 2, the spectral widths of both the reactive and 1-04j
antenna mode regions were increased as the modes became
higher except for the TM, antenna mode. It should be < 1.0
noted that there was no reactive mode for the TE,; mode, a
as the normalized phase constant always remained greater
than the normalized attenuation constant for the entire fre- 100 e e
quency range considered. Descriptions of the TM,, antenna
mode will be made available later. 0.98 . —

Figs. 4 and 5 indicate enlarged scaled plots of the
normalized phase constants for the TM,, and TE(, modes,
respectively, near unity. The arrows depict the cutoff
frequencies for the guided modes. As the frequency be-
came higher, the normalized phase constants for the TMy,
and TE,, modes met the cutoff frequencies of the guided
modes. Thus, it was found that the TE,, mode had non-
physical, reactive, and antenna modes below the cutoff fre-
quency of the guided mode, whose spectral widths in-
creased as the mode became higher. In the case of the leaky
TM,, mode, except for the TM, mode, the normalized
phase constant exceeded unity again, as shown in Fig. 4,
when the frequency was below the cutoff frequency of the
guided TMj, modes. The upper limit frequency of the TM,;
antenna mode directly met the cutoff frequency of the
guided TMy; mode. These narrow spectral ranges of the
normalized phase constants that are greater than unity in
the leaky TM,, (n >1) mode are identified as spectral gaps,
where the normalized phase constant is physically mean-
ingless [19], similar to the nonphysical frequency region.

0

5

10 15

Frequency [GHz]

20

Fig. 4 Normalized phase constant of 7TM;, mode with
enlarged scale near unity. Arrows depict the cutoffs

of the guided modes.
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1E,, TE, 1E,,

oS 1004 \ .............................................
~
@

0.96

0.82 .

4]

5

g
10 15
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20

Fig. 5§ Normalized phase constant of TE; mode with
enlarged scale near unity. Arrows depict the cutoffs
of the guided modes.
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Plus, their spectral widths increased with the order of the
mode, as seen in Table 1. However, the spectral gap region
of this structure was inconsistent with the traditional transi-
tion region from a leaky (& > 0) to a guided (& =0 ) mode,
as it was found that the nonzero value of the normalized
attenuation constants remained for the entire spectral gap
region, as shown in Figs. 2 (b) and 4 [14]. In the frequency
region above the spectral gap, there was a second antenna
mode region, where the normalized phase constants be-
came less than unity once again, as shown in Fig. 4. The
spectral width of the second antenna mode decreased as the
modes became higher. Since the previously observed spec-
-ral width of the TMy; antenna mode was broader than that
of the TMy, (n >1) antenna mode and the second antenna
mode exhibited a decreasing spectral width with the order
of the mode, the antenna mode of the TM,; mode was cate-
gorized as a second antenna mode [14]. The upper limit of
the second antenna mode region in the TM,, (n >1) mode
met the cutoff frequency of the guided mode.

5. Conclusions

A numerical solution is often required for the complex
characteristic equations involved in solving various
electromagnetic wave problems. As an alternative
approach that has the advantages of a more relaxed initial
guess and high computation speed, Davidenko’s method
was used to derive the complex propagation constant of a
circular dielectric rod. Several lower-order circular
symmetric leaky modes in circular dielectric rod
waveguides were then analyzed using the normalized phase
and attenuation constants obtained with Davidenko’s
method. As a result, the leaky modes existing below the
cutoff frequency of the guided mode were classified as
nonphysical mode, reactive mode, antenna mode, and
spectral gap. Accordingly, this successful application of
Davidenko’s method can contribute to the rigorous analysis
of complex modes, including the guidance and leakage
characteristics of circular guiding structures, such as
dielectric tubes and Goubau lines, as well as planar-type
guiding structures, such as an NRD guide.
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