• Title/Summary/Keyword: Symmetric Markov chain

Search Result 6, Processing Time 0.018 seconds

TWO-SIDED ESTIMATES FOR TRANSITION PROBABILITIES OF SYMMETRIC MARKOV CHAINS ON ℤd

  • Zhi-He Chen
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.537-564
    • /
    • 2023
  • In this paper, we are mainly concerned with two-sided estimates for transition probabilities of symmetric Markov chains on ℤd, whose one-step transition probability is comparable to |x - y|-dϕj (|x - y|)-1 with ϕj being a positive regularly varying function on [1, ∞) with index α ∈ [2, ∞). For upper bounds, we directly apply the comparison idea and the Davies method, which considerably improves the existing arguments in the literature; while for lower bounds the relation with the corresponding continuous time symmetric Markov chains are fully used. In particular, our results answer one open question mentioned in the paper by Murugan and Saloff-Coste (2015).

Analysis of Real-time Error for Remote Estimation Based on Binary Markov Chain Model (이진 마르코프 연쇄 모형 기반 실시간 원격 추정값의 오차 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.317-320
    • /
    • 2022
  • This paper studies real-time error in the context of monitoring a symmetric binary information source over a delay system. To obtain the average real-time error, the delay system is modeled and analyzed as a discrete time Markov chain with a finite state space. Numerical analysis is performed on various system parameters such as state transition probabilities of information source, transmission times, and transmission frequencies. Given state transition probabilities and transmission times, we investigate the relationship between the transmission frequency and the average real-time error. The results can be used to investigate the relationship between real-time errors and age of information.

Copula-based common cause failure models with Bayesian inferences

  • Jin, Kyungho;Son, Kibeom;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.357-367
    • /
    • 2021
  • In general, common cause failures (CCFs) have been modeled with the assumption that components within the same group are symmetric. This assumption reduces the number of parameters required for the CCF probability estimation and allows us to use a parametric model, such as the alpha factor model. Although there are various asymmetric conditions in nuclear power plants (NPPs) to be addressed, the traditional CCF models are limited to symmetric conditions. Therefore, this paper proposes the copulabased CCF model to deal with asymmetric as well as symmetric CCFs. Once a joint distribution between the components is constructed using copulas, the proposed model is able to provide the probability of common cause basic events (CCBEs) by formulating a system of equations without symmetry assumptions. In addition, Bayesian inferences for the parameters of the marginal and copula distributions are introduced and Markov Chain Monte Carlo (MCMC) algorithms are employed to sample from the posterior distribution. Three example cases using simulated data, including asymmetry conditions in total failure probabilities and/or dependencies, are illustrated. Consequently, the copula-based CCF model provides appropriate estimates of CCFs for asymmetric conditions. This paper also discusses the limitations and notes on the proposed method.

BAYESIAN AND CLASSICAL INFERENCE FOR TOPP-LEONE INVERSE WEIBULL DISTRIBUTION BASED ON TYPE-II CENSORED DATA

  • ZAHRA SHOKOOH GHAZANI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.819-829
    • /
    • 2024
  • This paper delves into an examination of both non-Bayesian and Bayesian estimation techniques for determining the Topp-leone inverse Weibull distribution parameters based on progressive Type-II censoring. The first approach employs expectation maximization (EM) algorithms to derive maximum likelihood estimates for these variables. Subsequently, Bayesian estimators are obtained by utilizing symmetric and asymmetric loss functions such as Squared error and Linex loss functions. The Markov chain Monte Carlo method is invoked to obtain these Bayesian estimates, solidifying their reliability in this framework.

Parameter estimation of an extended inverse power Lomax distribution with Type I right censored data

  • Hassan, Amal S.;Nassr, Said G.
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.99-118
    • /
    • 2021
  • In this paper, we introduce an extended form of the inverse power Lomax model via Marshall-Olkin approach. We call it the Marshall-Olkin inverse power Lomax (MOIPL) distribution. The four- parameter MOIPL distribution is very flexible which contains some former and new models. Vital properties of the MOIPL distribution are affirmed. Maximum likelihood estimators and approximate confidence intervals are considered under Type I censored samples. Maximum likelihood estimates are evaluated according to simulation study. Bayesian estimators as well as Bayesian credible intervals under symmetric loss function are obtained via Markov chain Monte Carlo (MCMC) approach. Finally, the flexibility of the new model is analyzed by means of two real data sets. It is found that the MOIPL model provides closer fits than some other models based on the selected criteria.

Joint analysis of binary and continuous data using skewed logit model in developmental toxicity studies (발달 독성학에서 비대칭 로짓 모형을 사용한 이진수 자료와 연속형 자료에 대한 결합분석)

  • Kim, Yeong-hwa;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.123-136
    • /
    • 2020
  • It is common to encounter correlated multiple outcomes measured on the same subject in various research fields. In developmental toxicity studies, presence of malformed pups and fetal weight are measured on the pregnant dams exposed to different levels of a toxic substance. Joint analysis of such two outcomes can result in more efficient inferences than separate models for each outcome. Most methods for joint modeling assume a normal distribution as random effects. However, in developmental toxicity studies, the response distributions may change irregularly in location and shape as the level of toxic substance changes, which may not be captured by a normal random effects model. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint model for binary and continuous outcomes. In our model, we incorporate a skewed logit model for the binary outcome to allow the response distributions to have flexibly in both symmetric and asymmetric shapes on the toxic levels. We apply our proposed method to data from a developmental toxicity study of diethylhexyl phthalate.