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TWO-SIDED ESTIMATES FOR TRANSITION

PROBABILITIES OF SYMMETRIC MARKOV CHAINS

ON Zd

Zhi-He Chen

Abstract. In this paper, we are mainly concerned with two-sided es-
timates for transition probabilities of symmetric Markov chains on Zd,

whose one-step transition probability is comparable to |x − y|−dϕj(|x −
y|)−1 with ϕj being a positive regularly varying function on [1,∞) with
index α ∈ [2,∞). For upper bounds, we directly apply the comparison

idea and the Davies method, which considerably improves the existing

arguments in the literature; while for lower bounds the relation with the
corresponding continuous time symmetric Markov chains are fully used.

In particular, our results answer one open question mentioned in the pa-
per by Murugan and Saloff-Coste (2015).

1. Introduction

Recently symmetric Markov chains with infinite range jumps have been re-
ceived a lot of interest. In particular, two-sided estimates for transition proba-
bilities of α-stable-like symmetric Markov chains on Zd, whose one-step tran-
sition probability is comparable to |x − y|−d−α with α ∈ (0, 2), were first
established in [4]. Since then, there have been substantially excellent works on
the extensions of [4]. One direction is to consider the corresponding results for
continuous time symmetric jump processes; for example, see [7] for symmet-
ric α-stable-like processes on d-sets with α ∈ (0, 2) and [8–10] for the mixture
of symmetric stable-like processes on metric measure spaces. The other di-
rection is devoted to establishing explicit estimates for transition probabilities
of various discrete time Markov chains in different settings; for example, see
[15] for symmetric α-stable-like processes on graphs and [13] for symmetric
subordinated Markov chains on Zd.
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Among them, two-sided estimates for transition probabilities were presented
in [15] for discrete time Markov chains on a uniformly discrete metric measure
space whose one-step transition probability is comparable to

(V (d(x, y))ϕ(d(x, y)))−1,

where d(x, y) is the distance for the underlying space, ϕ is a positive contin-
uous regularly varying function with index α ∈ (0, 2), and r 7→ V (r) is the
homogeneous volume growth function.

The following question was put forward in [15, (A), page 727]:

What happens if α ≥ 2? Even in the simplest setting of Z or R, no sharp two-
sided time-space estimates are available for the iterated kernel hn when α ≥ 2
(especially, when α = 2!).

Some comments are further highlighted in [15, page 727] to show that the
question above is very difficult to obtain. The purpose of this paper is to
address this question for symmetric Markov chains on Zd completely.

Below we first describe the assumptions and the setting of our paper, and
then present the main result. Two concrete examples closely related to the
question above are provided to illustrate the power of our main result.

1.1. Assumptions

Throughout this paper, we use “:=” as a way of definition, which is read as
“is defined by”. The symbol | · | denotes the Euclidean norm, and B(x, r) :=
{y ∈ Zd : |x− y| < r} for any x ∈ Zd and r > 0. For two real numbers a and
b, a ∧ b := min{a, b}. For functions f and g, the notation f ≍ g means that
there exist constants c1, c2, c3, c4 > 0 such that c1f(c2r) ≤ g(r) ≤ c3f(c4r),
and the notation f ≃ g means that there exist constants c1, c2 > 0 such that
c1f(r) ≤ g(r) ≤ c2f(r).

Let J(x, y) be a symmetric function on Zd ×Zd such that J(x, y) = J(y, x)
for all x, y ∈ Zd, and that there exists a constant CJ ≥ 1 so that for all
x, y ∈ Zd with x ̸= y,

(1.1)
C−1

J

|x− y|dϕj(|x− y|)
≤ J(x, y) ≤ CJ

|x− y|dϕj(|x− y|)
.

Here ϕj : [1,∞) → [1,∞) is a non-decreasing function such that ϕj(1) = 1 and
that there are constants c2 ≥ c1 > 0 and α2 ≥ α1 ≥ 2 so that for all R ≥ r ≥ 1,

(1.2) c1

(R
r

)α1

≤ ϕj(R)

ϕj(r)
≤ c2

(R
r

)α2

.

Below we extend ϕj to R+ := [0,∞) by setting ϕj(r) = r3/2 for all r ∈ [0, 1].
In particular, ϕj is increasing on R+ with ϕj(0) = 0. Correspondingly, we can
define

(1.3) ϕc(r) :=
r2∫ r

0
s

ϕj(s)
ds
, r ≥ 0.
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The definition of ϕc is taken from [1, (1.10)]. Actually, as indicated by [1], ϕj
is the scaling function of the transition kernel, and ϕc will play a role in the
scaling function for the process. Note that, by (2.2) and Lemma 2.2 below,
2ϕj(r) ≥ ϕc(r) for all r ≥ 0, and

lim
r→∞

ϕj(r)

ϕc(r)
= ∞.

Throughout the paper, the following Assumption (H) is imposed on the
scaling functions ϕj and ϕc in force.

(H) For any γ > 0, there exist constants l ∈ (0, 1) and C > 0 such that for
all r ≥ 1,

(1.4)

∫ lr

0

exp

{
γ

s

M(r)

}
s

ϕj(s)
ds ≤ C

M(r)2

ϕc(M(r))
,

where

M(r) := r
/
log

(
4ϕj(r)

ϕc(r)

)
.

Remark 1.1. Since∫ M(r)

0

exp

{
γ

s

M(r)

}
s

ϕj(s)
ds ≤ eγ

∫ M(r)

0

s

ϕj(s)
ds = eγ

M(r)2

ϕc(M(r))
,

(1.4) is satisfied, when for any γ > 0 there exist l ∈ (0, 1) and A > 0 such that
for all r ≥ 1 with lr ≥M(r),

(1.5)

∫ lr

M(r)

exp

{
γ

s

M(r)

}
s

ϕj(s)
ds ≤ A

M(r)2

ϕc(M(r))
.

1.2. Main result

Now, we consider a symmetric Markov chain (Xn)n≥0 on Zd with a one-step
transition probability given by

(1.6) p(x, y) =
J(x, y)∑
z ̸=x J(x, z)

,

where J(x, y) is given above and satisfies (1.1). We are interested in two-sided
estimates for the transition probabilities pn(x, y) := P

x(Xn = y) of the process
(Xn)n≥0, where P

x is denoted by the probability of the process (Xn)n≥0 with
X0 = x. According to the Chapman-Kolmogorov equations, for any 1 ≤ k ≤ n
and x, y ∈ Zd,

pn(x, y) =
∑
z∈Zd

pk(x, z)pn−k(z, y),

where p0(x, y) = δx(y) and p1(x, y) = p(x, y).
The main result of the paper is as follows.
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Theorem 1.2. Suppose that (1.1), (1.2) and Assumption (H) hold. Then
there are constants c1, c2 > 0 such that for all x, y ∈ Zd and n ≥ 1,

pn(x, y)(1.7)

≍


[ϕ−1

c (n)]−d, n ≥ c1ϕc(|x− y|),

[ϕ−1
c (n)]−d exp

{
− |x−y|

ϕ
−1
c ( n

|x−y| )

}
, c2n∗(|x− y|) ≤ n ≤ c1ϕc(|x− y|),

n
|x−y|dϕj(|x−y|) , n ≤ c2n∗(|x− y|),

where ϕ̄c(r) = ϕc(r)/r, ϕ
−1
c (r) = inf{s ≥ 0 : ϕc(s) ≥ r}, ϕ̄−1

c (r) = inf{s ≥ 0 :
ϕ̄c(s) ≥ r} and

n∗(r) = rϕ̄c

(
r

log
4ϕj(r)
ϕc(r)

)
= ϕc

(
r

log
4ϕj(r)
ϕc(r)

)
log

4ϕj(r)

ϕc(r)
, r ≥ 1.

Remark 1.3. We make three comments on Theorem 1.2 and its proof.
(i) Theorem 1.2 is analogous to [1, Theorems 1.2 and 1.4], where sharp two-

sided estimates of the transition densities (heat kernel) for symmetric jump
processes on Rd whose weak scaling index is not necessarily strictly less than
2 (that is, jump processes in [1] may be allowed to have light tails of jumping
kernels with any polynomial decay at infinity) were established. The readers
can refer to [2,11] for further study on two-sided heat kernel estimates and their
stabilities properties for symmetric non-local Dirichlet forms of pure jump type
on metric measure space.

(ii) As done in [4, 15], in order to prove the upper bounds of transition
probabilities stated in Theorem 1.2 for discrete time Markov chain (Xn)n≥0 we
will partly make use of heat kernel estimates for the continuous time Markov
chain (Yt)t≥0 associated with (Xn)n≥0; see the end of Section 2 for the definition
and properties of (Yt)t≥0. Instead of directly apply the results in [1], in the
present paper we will prove upper bounds of transition probabilities for (Yt)t≥0

via the so-called Davies method. We mention that the argument in [1] is based
on some self-improving arguments starting from rough estimates for the exit
time of the process (Yt)t≥0. As we see below, the Davies method adopt here
considerably simplifies the proofs in [1], and the approach should be interesting
and useful of its own.

(iii) For lower bounds of transition probabilities in Theorem 1.2, the common
method in the literature is to establish parabolic Harnack inequalities for the
Markov chain (Xn)n≥0, whose proof is lengthy; see [4, 15]. However, here
we directly use the probabilistic relation between the processes (Xn)n≥0 and
(Yt)t≥0, which immediately yields near-diagonal lower bounds for transition
probabilities of (Xn)n≥0; see Proposition 4.3.

1.3. Two examples

In this part, we take two examples which indicate that the function ϕj(r) =
rβ for r ≥ 1 with β ≥ 2 satisfies Assumption (H). Therefore, Theorem 1.2
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applies. In particular, this answers the question in [15, (A), page 727] affir-
matively for symmetric Markov chains on Zd with this special scale function
ϕj(r) = rβ for all r ≥ 1 with β ≥ 2.

Example 1.4. Suppose that ϕj satisfies (1.2) with α1 > 2. Then, ϕc(r) ≃ r2

for r ≥ 1. In particular, ϕ̄c(r) ≃ r, ϕ̄−1
c (r) ≃ r, and so for all r > 1 large

enough,

M(r) = r

/
log

4ϕj(r)

ϕc(r)
≃ r(log r)−1,

thanks to (1.2).
In order to verify Assumption (H), we only need to consider r ≥ 1 large

enough. First, define

F1(s) = exp

{
γ

s

M(r)

}
, F2(s) = C0(e+ s)θ, s ∈ [M(r), lr]

with γ,C0 > 0 and 0 < θ < 1. We will claim that there are l, C0 > 0 and
θ ∈ (0, 1∧ (α1 − 2)) such that for all r ≥ 1 large enough with lr ≥ 1 and for all
s ∈ [M(r), lr], F1(s) ≤ F2(s). Indeed, set H(s) := F2(s)− F1(s). By choosing
C0 > 0 large enough, we find that for all r ≥ 1,

H(M(r)) := F2(M(r))− F1(M(r)) = C0(e+M(r))θ − eγ ≥ C0e
θ − eγ ≥ 0.

On the other hand, for all r ≥ 1 large enough with lr ≥ 1 and for all s ∈
[M(r), lr],

H ′(s) = F ′
2(s)− F ′

1(s) = θC0(e+ s)θ−1 − γ

M(r)
exp

{
γ

s

M(r)

}
≥ θC0(e+ s)θ−1 − c1γ log r

r
r

c1γs
r

≥ θC0(e+ 1)θ−1lθ−1rθ−1 − c1γ log r · rc1lγ−1,

where in the first inequality we used M(r) ≃ r(log r)−1 for r ≥ 1 large enough
and c1 > 0 is independent of r. Then, for fixed θ ∈ (0, 1 ∧ (α1 − 2)), we
can choose l = θ/(2c1γ) so that H ′(s) ≥ 0 for all r ≥ l−1 large enough and
s ∈ [M(r), lr]. Hence, with the choices of C0 and l above, we can obtain that
F1(s) ≤ F2(s) for all r ≥ l−1 large enough and s ∈ [M(r), lr]. Therefore, due
to θ ∈ (0, 1 ∧ (α1 − 2)), for all r ≥ l−1 large enough,∫ lr

M(r)

exp

{
γ

s

M(r)

}
1

sα1−1
ds ≤

∫ +∞

1

C0(e+ s)θ
1

sα1−1
ds := C <∞,

which, along with the fact ϕj(r) ≥ c∗r
α1 for all r ≥ 1 with some constant

c∗ > 0 (due to (1.2) again), yields that (1.5) is satisfied for all r > 1 large
enough, and so Assumption (H) holds true.

Thus, according to Theorem 1.2, the associated transition probabilities
pn(x, y) satisfy the following estimates: there are constants c2, c3 > 0 such
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that for all x, y ∈ Zd and n ≥ 1,

pn(x, y)≍


n−d/2, n ≥ c2|x−y|2,
n−d/2 exp

{
− |x−y|2

n

}
, c3|x−y|2 log−1(1+|x−y|) ≤ n ≤ c2|x−y|2,

n
|x−y|dϕj(|x−y|) , n ≤ c3|x−y|2 log−1(1+|x−y|).

Example 1.5. Suppose that ϕj(r) = r2 for all r ≥ 1. Then, for all r ≥ 1

large enough, ϕc(r) ≃ r2

log r , ϕ̄c(r) ≃ r
log r and ϕ̄−1

c (r) ≃ r log r; moreover, for

all r ≥ 1 large enough,

M(r) = r

/
log

4ϕj(r)

ϕc(r)
≃ r(log log r)−1,

M(r)2

ϕc(M(r))
≃ log r.

For any γ > 0, l ∈ (0, 1) and r ≥ 1 large enough,∫ lr

M(r)

exp

{
γ

s

M(r)

}
1

s
ds ≤ exp

{
γ

lr

M(r)

}
lr

M(r)

≤ c1 exp

{
c2γl log log r

}
l(log log r)

≤ c1l(log r)
c2γl(log log r),

where c1, c2 are independent of r. Then, by taking l = 1/(2(c2γ ∨ 1)) in the
inequality above, we know that (1.5) is also true for all r ≥ l−1 large enough.
Hence, Assumption (H) is satisfied for this example.

Therefore, according to Theorem 1.2, the associated transition probabilities
pn(x, y) satisfy the following estimates: there are constants c3, c4 > 0 such that
for all x, y ∈ Zd and n ≥ 1,

pn(x, y) ≍


[n log(1 + n)]−d/2, n ≥ c3n1(|x− y|),
[n log(1 + n)]−d/2 exp

{
− |x−y|2

n log(1+n/|x−y|)

}
, c4n2(|x− y|) ≤ n

≤ c3n1(|x− y|),
n

|x−y|d+2 , n ≤ c4n2(|x− y|),

where

n1(r) = r2 log−1(1 + r), n2(r) = r2 log−1(1 + r) log−1 log(e+ r).

The rest of the paper is arranged as follows. In Section 2, we give prelimi-
naries on the scale functions ϕj and ϕc as well as some properties for J(x, y).
Section 3 and Section 4 are devoted to the proofs of upper bounds and lower
bounds for the transition probabilities pn(x, y), respectively.
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2. Preliminaries

In this section, we present some preliminary results that will be frequently
used in the sequel. Recall that

ϕc(r) =
r2∫ r

0
s

ϕj(s)
ds
, r ≥ 0.

Since ϕj(r) = r3/2 for all r ∈ [0, 1], we know that ϕc(r) =
1
2r

3/2 for r ∈ [0, 1].
Then, by (1.2), there is a constant c0 ≥ 1 such that for all R ≥ r > 0,

(2.1) c−1
0

(
R

r

)3/2

≤ ϕj(R)

ϕj(r)
≤ c0

(
R

r

)α2

,

where α2 ≥ 2 is given in (1.2). On the other hand, because ϕj is non-decreasing
on [0,∞),

(2.2) ϕc(r) =
r2∫ r

0
s

ϕj(s)
ds

≤ r2∫ r

0
s

ϕj(r)
ds

= 2ϕj(r), r ≥ 0.

Furthermore, it is easy to see that for all 0 < r ≤ R,

(2.3)
ϕc(R)

ϕc(r)
=
R2/

∫ R

0
s/ϕj(s) ds

r2/
∫ r

0
s/ϕj(s) ds

≤ R2

r2
.

With the aid of all the discussions above, we have the following statements
for ϕc(r) and ϕ̄c(r) := ϕc(r)/r.

Lemma 2.1. Under (1.2), there are constants c2 ≥ c1 > 0 such that for all
0 < r ≤ R,

(2.4) c1

(R
r

)3/2
≤ ϕc(R)

ϕc(r)
≤ c2

(R
r

)2
.

In particular, for all 0 < r ≤ R,

(2.5) c1

(R
r

)1/2
≤ ϕ̄c(R)

ϕ̄c(r)
≤ c2

R

r

and there is a constant c3 > 0 such that for all 0 < r ≤ R,

(2.6) R/ϕ̄−1
c (R) ≤ c3r/ϕ̄

−1
c (r).

Proof. By (2.3), we only need to verify the first inequality in (2.4). For any
R ≥ r ≥ 0,∫ R

0

s

ϕj(s)
ds =

(
R

r

)2 ∫ r

0

u

ϕj(Ru/r)
du ≤ c0

(
R

r

)1/2 ∫ r

0

u

ϕj(u)
du,

where in the inequality we used (2.1). This along with the definition of ϕc can
yield the desired assertion. □

Next, we present two lemmas related to (1.2).
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Lemma 2.2. Under (1.2), it holds that

lim
r→∞

ϕj(r)

ϕc(r)
= ∞.

Proof. Note that
ϕj(r)

ϕc(r)
=
ϕj(r)

r2

∫ r

0

s

ϕj(s)
ds

and, by (1.2),

c1r
α1 ≤ ϕj(r) ≤ c2r

α2 , r ≥ 1

for some α2 ≥ α1 ≥ 2. It is easy to see that the desired assertion holds when∫∞
0
s/ϕj(s) ds = ∞.

On the other hand, if
∫∞
0
s/ϕj(s) ds < ∞, then there is a constant c3 > 0

so that for all r ≥ 1,
ϕj(r)

ϕc(r)
≥ c3

ϕj(r)

r2
.

We claim that limr→∞ ϕj(r)/r
2 = ∞, and so the desired assertion holds as

well. If it is not true, then there is a constant c4 > 0 such that for all
ϕj(r)/r ≤ c4r for all r ≥ 1, and so

∫∞
0
s/ϕj(s) ds = ∞, which is a contradiction.

Next, we verify that limr→∞ ϕj(r)/r
2 = ∞. Indeed, since

∫∞
1
s/ϕj(s) ds =∑∞

n=0

∫ 2n+1

2n
s/ϕj(s) ds < ∞, it follows from (1.2) that

∑∞
n=0

22n

ϕj(2n)
< ∞ and

so

lim
n→∞

22n

ϕj(2n)
= 0,

which along with (1.2) again yields that limr→∞ r2/ϕj(r) = 0; that is,

lim
r→∞

ϕj(r)/r
2 = ∞.

The proof is complete. □

Lemma 2.3. Under (1.2), there is a constant c > 0 such that for all r ≥ 1,

log
4ϕj(r)

rϕ̄c(M(r))
≤ c log

4ϕj(r)

ϕc(r)
,

where ϕ̄c(r) = ϕc(r)/r, and M(r) is defined in Assumption (H).

Proof. For any r ≥ 1, by the definition of M(r), we can write

log
4ϕj(r)

rϕ̄c(M(r))
= log

4ϕj(r)

ϕc(M(r))
− log log

4ϕj(r)

ϕc(r)

= log
ϕc(r)

ϕc(M(r))
+ log

4ϕj(r)

ϕc(r)
− log log

4ϕj(r)

ϕc(r)
.

So, it suffices to verify that there is a constant c0 > 0 so that for any r ≥ 1,

log
ϕc(r)

ϕc(M(r))
≤ c0 log

4ϕj(r)

ϕc(r)
.
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Indeed, according to the definition ϕc(r),

log
ϕc(r)

ϕc(M(r))
= log

r2

M(r)2
+ log

(∫ M(r)

0

s/ϕj(s) ds

/∫ r

0

s/ϕj(s) ds

)

≤2 log log
4ϕj(r)

ϕc(r)
+ log

(∫ r/ log 2

0

s/ϕj(s) ds

/∫ r

0

s/ϕj(s) ds

)

≤c1 + 2 log log
4ϕj(r)

ϕc(r)
,

where in the first inequality we used the fact that M(r) ≤ r/ log 2 (thanks to
2ϕj(r) ≥ ϕc(r) for all r ≥ 1), and the last inequality follows from the scaling
property (2.1) of ϕj(r). Hence, we can obtain the desired assertion. □

The following lemma is a direct consequence of (1.1) on J(x, y).

Lemma 2.4. Under (1.1) and (1.2), there exist constants C1, C2 > 0 such that
for all x ∈ Zd and r ≥ 1,

(2.7)
∑

y∈B(x,r)c

J(x, y) ≤ C1

ϕj(r)

and

(2.8)
∑

y∈B(x,r)

|x− y|2J(x, y) ≤ C2

∫ r

0

s

ϕj(s)
ds.

Proof. According to (1.1) and (1.2),∑
y∈B(x,r)c

J(x, y) ≤ CJ

∑
y∈B(x,r)c

1

|x− y|dϕj(|x− y|)

= CJ

∞∑
n=1

∑
2n−1r≤|x−y|<2nr

1

|x− y|dϕj(|x− y|)

≤ c1

∞∑
n=1

(2nr)d

(2n−1r)dϕj(2n−1r)
≤ c2
ϕj(r)

∞∑
n=1

2−nα1 ≤ c3
ϕj(r)

and∑
y∈B(x,r)

|x− y|2J(x, y) ≤ CJ

∑
y∈B(x,r)

1

|x− y|d−2ϕj(|x− y|)
≤ c4

∫ r

0

s

ϕj(s)
ds.

The proof is completed. □

Recall that (Xn)n≥0 is a symmetric Markov chain on Zd with one-step tran-
sition probability p(x, y) = µ−1

x J(x, y), where

(2.9) µx =
∑
z ̸=x

J(x, z).
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According to (1.1), there is a constant c0 ≥ 1 such that for all x ∈ Zd, c−1
0 ≤

µx ≤ c0; that is, µ(dz) =
∑

x∈Zd µxδx(dz) is comparable with the counting

measure on Zd, where δx(·) is the Dirac measure. For the proof of our main
result, we also need the corresponding continuous time Markov chain associated
with (Xn)n≥0, which is defined by Yt := XN(t) and N(t) is a standard Poisson
process independent of (Xn)n≥0. For the details of the construction of the
process (Yt)t≥0, one can refer to [4, Section 2] or [15, Section 1]. Furthermore,
we can see that the infinitesimal generator of the process (Yt)t≥0 is given by

LY f(x) = µ−1
x

∑
y ̸=x

(f(y)− f(x))J(x, y).

In particular, LY is symmetric on L2(Zd;µ) and, by (1.1) again, the corre-
sponding Dirichlet form (E,F) is given by

E(f, f) =
1

2

∑
x,y∈Zd

(f(x)− f(y))2J(x, y), f ∈ F,(2.10)

F =
{
f ∈ L2(Zd;µ) : E(f, f) <∞

}
= L2(Zd;µ).

Indeed, (E,F) is regular; e.g., see (the first statement in) [5, Theorem 3.2].
Denote the transition probability density with respect to µ of (Yt)t≥0 by q(t, ·, ·).
It holds that

q(t, x, y) :=
Px(Yt = y)

µx
=

∞∑
n=0

e−ttn

n!
pn(x, y), t ≥ 0, x, y ∈ Zd.

3. Upper bounds for transition probabilities

In this section, we establish upper bounds for the transition probabilities
pn(x, y) of the Markov chain (Xn)n≥0. For this aim, we will study the upper
bounds for heat kernel q(t, x, y) of the continuous time Markov chain (Yt)t≥0,
which consists of two steps. First, we apply the comparison idea and the Nash-
type inequality to obtain on-diagonal upper bounds for q(t, x, y), and then
adopt the Davies method to derive off-diagonal upper bounds for q(t, x, y).
With the upper bounds of q(t, x, y) at hand, we can present the corresponding
results for pn(x, y) by using the comparison idea as well as the ∆(α) condition
originated from [14].

3.1. On-diagonal upper bounds for q(t, x, y)

To establish on-diagonal upper bounds for q(t, x, y), we will compare the
process (Yt)t≥0 with a Lévy process (Zt)t≥0, which takes the value on Zd and
whose Lévy measure is given by

n(dx) =
∑

z∈Zd:z ̸=0

1

|z|dϕj(|z|)
δz(dx).

We begin with the following lemma.
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Lemma 3.1. The Lévy process (Zt)t≥0 has the transition density qZ(t, x, y),
which satisfies that there is a constant C0 > 0 so that for all x, y ∈ Zd and
t > 0,

(3.1) qZ(t, x, y) ≤ C0[ϕ
−1
c (t)]−d.

Proof. Let φZ
t (u) be the characteristic function of the process (Zt)t≥0. Since

(Zt)t≥0 takes value on Zd, φZ
t (u) is periodic with period 2π. According to the

Lévy-Khintchine formula and the symmetry of the Lévy measure n(dz), for all
t > 0,

φZ
t (u) = exp

{
− t

∑
z∈Zd

(1− cos⟨u, z⟩) 1

|z|dϕj(|z|)

}
, |u| ≤ π.

When |u| ≤ 1/2,∑
z∈Zd

(1− cos⟨u, z⟩) 1

|z|dϕj(|z|)
≥

∑
z∈Zd:|z|≤1/|u|

(1− cos⟨u, z⟩) 1

|z|dϕj(|z|)

≥ cos 1

2

∑
z∈Zd:|z|≤1/|u|

⟨u, z⟩2 1

|z|dϕj(|z|)

=
cos 1 · |u|2

2

∑
z∈Zd:|z|≤1/|u|

⟨u/|u|, z⟩2 1

|z|dϕj(|z|)
,

where the second inequality follows from the fact that 1− cos r ≥ cos 1
2 r2 for all

|r| ≤ 1. For any x ∈ Rd, let x = (x1, x2, . . . , xd). By the rotational invariance
property, without loss of generality we assume that u/|u| = e1 := (1, 0, 0, . . .).
Then∑

z∈Zd

(1− cos⟨u, z⟩) 1

|z|dϕj(|z|)
≥ cos 1 · |u|2

2

∑
z∈Zd:|z|≤1/|u|

z21
|z|dϕj(|z|)

=
cos 1 · |u|2

2d

∑
z∈Zd:1≤|z|≤1/|u|

1

|z|d−2ϕj(|z|)

= c1|u|2
∑

1≤r≤1/|u|

r

ϕj(r)
≥ c2

1

ϕc
(
1/|u|

) ,
where the last equality follows from the definition of the scale function ϕc(r).

When 1/2 ≤ |u| ≤ π, without loss of generality we may and can assume that
|u1| ≥ 1

2
√
d
. Choosing z0 = e1,∑

z∈Zd

(1− cos⟨u, z⟩) 1

|z|dϕj(|z|)
≥ 1

|z0|dϕj(|z0|)
(1− cos⟨u, z0⟩)

≥ 1

ϕj(1)

(
1− cos

1

2
√
d

)
≥ c3.
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Hence, for all t > 0,

qZ(t, x, y) =
1

(2π)d

∫
{|u|≤π}

ei⟨x−y,u⟩φZ
t (u) du ≤ 1

(2π)d

∫
{|u|≤π}

φZ
t (u) du

≤ c4

{∫
{1/2≤|u|≤π}

e−c3t du+

∫
{|u|≤1/2}

exp

(
− c2t

ϕc(1/|u|)

)
du

}
=: I1 + I2.

Note that

I1 ≤ c5e
−c3t.

On the other hand,

I2 ≤ c6

∫ ∞

0

rd−1 exp

(
− c2t

ϕc(1/r)

)
dr =

c6
d

∫ ∞

0

e−c2s ds

[
1

ϕ−1
c (t/s)

]d
=
c6
d

{∫ 1

0

+

∞∑
n=0

∫ 2n+1

2n

}
e−c2s ds

[
1

ϕ−1
c (t/s)

]d
≤ c6

d
[ϕ−1

c (t)]−d +
c6
d

∞∑
n=0

e−c22
n

[ϕ−1
c (t/2n+1)]−d ≤ c7[ϕ

−1
c (t)]−d,

where the last inequality is a consequence of (2.4).
By (2.4) again, there is a constant c8 > 0 so that e−c3t ≤ c8[ϕ

−1
c (t)]−d for

all t > 0. Combining with all the estimates above, we finish the proof. □

We now can obtain on-diagonal upper bounds for the transition densities of
(Yt)t≥0.

Proposition 3.2. Suppose that (1.1) and (1.2) hold. Then the continuous
time Markov chain (Yt)t≥0 has the transition density q(t, x, y), and there exists
a constant C1 > 0 such that for all x, y ∈ Zd and t > 0,

(3.2) q(t, x, y) ≤ C1[ϕ
−1
c (t)]−d.

Proof. Let µ be the positive measure on Zd so that µ({x}) = µx for all x ∈ Zd,
where µx is given by (2.9). Let (E,F) (with F = L2(Zd;µ)) be the Dirichlet
form on L2(Zd;µ) associated with the continuous time Markov chain (Yt)t≥0;
see (2.10). Denote by (EZ ,FZ) the Dirichlet form corresponding to the Lévy
process (Zt)t≥0. It is easy to see that (E,F) is comparable with (EZ ,FZ) thanks
to (1.1), and (E,F) is a regular symmetric Dirichlet form on L2(Zd;µ),

Set

ψ(t) := C1[ϕ
−1
c (t)]−d, t > 0.

We can see that the function r 7→ 1/ψ(r) satisfies the doubling property; that
is, there is a constant c0 > 0 such that for all r > 0, ψ(r)/ψ(2r) ≤ c0.

With those two conclusions above at hand and Lemma 3.1, we can verify the
desired assertion. Indeed, according to [12, Proposition II.1] or [6, Theorem
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3.4 and Remark 3.5(i)], the following generalized Nash-type inequality holds
for (E,F):

(3.3) θ(∥f∥22) ≤ c1E(f, f), f ∈ F with ∥f∥1 = 1,

where θ(r) = r/ψ−1(r). □

3.2. Off-diagonal upper bounds for q(t, x, y)

Proposition 3.3. Suppose that (1.1), (1.2) and Assumption (H) hold. Then,
there exist positive constants c0, c∗, C1 and C2 such that for all x, y ∈ Zd and
t ≥ 1,

q(t, x, y)(3.4)

≤


C1[ϕ

−1
c (t)]−d, t ≥ c0ϕc(|x− y|),

C1[ϕ
−1
c (t)]−d exp

{
− C2|x−y|

ϕ
−1
c ( t

|x−y| )

}
, t∗ ≤ t ≤ c0ϕc(|x− y|),

C1t
|x−y|dϕj(|x−y|) , 1 ≤ t ≤ t∗,

where t∗ := c∗|x− y|ϕ̄c
(

|x−y|
log

4ϕj(|x−y|)
ϕc(|x−y|)

)
.

Proof. According to Proposition 3.2, we only need to verify the desired asser-
tion for the case that c0ϕc(|x − y|) ≥ t with any fixed c0 > 0 (small enough).
Since we are concerned on (3.4) for t ≥ 1, without loss of generality it suffices
to consider the case that both |x − y| and t are large enough, also thanks to
Proposition 3.2.

(i) We first claim that for any c0, c∗ > 0 there are constants c1, c2 > 0 such
that for all c0ϕc(|x− y|) ≥ t ≥ t∗,

c1[ϕ
−1
c (t)]−d exp

− c2|x− y|

ϕ̄−1
c

(
t

|x−y|

)
 ≥ t

|x− y|dϕj(|x− y|)
,

where

t∗ := c∗|x− y|ϕ̄c

 |x− y|
log

4ϕj(|x−y|)
ϕc(|x−y|)

 .

Indeed, by (2.5) and (2.2), we can take c3 > 0 (which depends on c∗ only) such
that t∗ ≥ t0 for all x, y ∈ Zd, where

t0 = |x− y|ϕ̄c

 c3|x− y|
log

4ϕj(|x−y|)
ϕc(|x−y|)

 .

Then, for any c0ϕc(|x− y|) ≥ t ≥ t∗ ≥ t0,

exp

− c3|x− y|

ϕ̄−1
c

(
t

|x−y|

)
 ≥ exp

− c3|x− y|

ϕ̄−1
c

(
t0

|x−y|

)
 =

ϕc(|x− y|)
4ϕj(|x− y|)

,
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which is equivalent to saying that

4[ϕ−1
c (t)]−d [ϕ

−1
c (t)]d

|x− y|d
t

ϕc(|x− y|)
exp

− c3|x− y|

ϕ̄−1
c

(
t

|x−y|

)


− t

ϕc(|x− y|)
ϕc(|x− y|)

|x− y|dϕj(|x− y|)
≥ 0.

This yields the desired assertion, thanks to the fact that there are constants
c4, c5 > 0 so that

[ϕ−1
c (t)]d

|x− y|d
t

ϕc(|x− y|)
exp

− c3|x− y|

ϕ̄−1
c

(
t

|x−y|

)
 ≤ c4 exp

− c5|x− y|

ϕ̄−1
c

(
t

|x−y|

)
 ,

which in turn is due to c0ϕc(|x− y|) ≥ t.
(ii) For any K ≥ 1, set JK(x, y) = J(x, y)1{|x−y|≤K} and

EK(f, f) =
1

2

∑
x,y∈Zd

|f(x)− f(y)|2JK(x, y).

Note that

E(f, f)− EK(f, f) =
1

2

∑
x,y∈Zd

|x−y|>K

|f(x)− f(y)|2J(x, y)(3.5)

≤
∑

x,y∈Zd

|x−y|>K

(f(x)2 + f(y)2)J(x, y)

≤ c6∥f∥22[ϕj(K)]−1,

where the last inequality follows from (2.7). In particular, this implies that
(EK ,F) is a regular symmetric Dirichlet form on L2(Zd, µ). Furthermore, de-
note by qK(t, x, y) the heat kernel associated with (EK ,F). According to (3.5),
the Nash-type inequality (3.3) and [6, Theorem 1.2], there exists a constant
c7 > 0 such that

qK(t, x, y) ≤ c7[ϕ
−1
c (t)]−d exp

{
c6

t

ϕj(K)
− EK(2t, x, y)

}
, x, y ∈ Zd, t > 0,

where

ΓK(φ)(x)=
∑
y∈Zd

(eφ(x)−φ(y)−1)2JK(x, y), ΛK(φ)2=∥ΓK(φ)∥∞∨∥ΓK(−φ)∥∞

and

EK(t, x, y) = sup{|φ(x)− φ(y)| − tΛK(φ)2 : φ has compact support}.
In the following, we fix l ∈ (0, 1) small enough, c8 > 0 large enough, t ≥ 1

and x, y ∈ Zd with |x − y| ≥ max{c8ϕ−1
c (t), l−1}. We take K = l|x − y|. In

particular, K ≥ 1. Define φ(z) := s(|x− y| − |x− z|)+, where s > 0 is chosen
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later. Using the facts that |et − 1|2 ≤ t2e2|t| and |φ(z) − φ(w)| ≤ s|z − w|, as
well as (1.1), we find that

ΓK(φ)(z) =
∑

w∈B(z,K)

(eφ(z)−φ(w) − 1)2JK(z, w)

≤
∑

w∈B(z,K)

(φ(z)− φ(w))2e2|φ(z)−φ(w)|JK(z, w)

≤ s2
∑

w∈B(z,K)

|z − w|2e2s|z−w|JK(z, w) ≤ c9s
2

∫ K

0

e2sr
r

ϕj(r)
dr.

The same estimate holds for ΓK(−φ). Hence,

ΛK(φ)2 ≤ c9s
2

∫ K

0

e2sr
r

ϕj(r)
dr.

Then

qK(t, x, y) ≤ c10[ϕ
−1
c (t)]−d exp

{
−|φ(x)− φ(y)|+ 2c9ts

2

∫ K

0

e2sr
r

ϕj(r)
dr

}

≤ c10[ϕ
−1
c (t)]−d exp

{
s|x− y|

[
−1 +

2c9ts

|x− y|

∫ K

0

e2sr
r

ϕj(r)
dr

]}
,

where in the first inequality we used the fact that ϕj(K) ≥ c11t when |x− y| ≥
c8ϕ

−1
c (t) and K = l|x− y|, thanks to the fact that 2ϕj(r) ≥ ϕc(r) for all r ≥ 1.

Here we note that the constant c9 is independent of l.
(iii) Recall that we set

t∗ = c∗|x− y|ϕ̄c

 |x− y|
log

4ϕj(|x−y|)
ϕc(|x−y|)

 ,

where c∗ > 0 is small that will be fixed in the next part. Suppose that t∗ ≤ t ≤
c0ϕc(|x − y|), where c0 is small enough such that |x − y| ≥ c8ϕ

−1
c (t) with the

constant c8 (large) above. (This is guaranteed by (2.5).) Let s = a

ϕ̄−1
c ( t

|x−y| )
,

where a ∈ (0, 1/2) is small enough and is chosen later. Then,

2c9ts

|x− y|

∫ K

0

e2sr
r

ϕj(r)
dr

=
2c9t

|x− y|
a

ϕ̄−1
c

(
t

|x−y|

) ∫ K

0

exp

 2ar

ϕ̄−1
c

(
t

|x−y|

)
 r

ϕj(r)
dr

≤ c12t∗
|x− y|

a

ϕ̄−1
c

(
t∗

|x−y|

) ∫ K

0

exp

 2ar

ϕ̄−1
c

(
t∗

|x−y|

)
 r

ϕj(r)
dr
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≤ c12c∗ϕ̄c

 |x− y|
log

4ϕj(|x−y|)
ϕc(|x−y|)

 a

ϕ̄−1
c

(
c∗ϕ̄c

(
|x−y|

log
4ϕj(|x−y|)
ϕc(|x−y|)

))

×
∫ K

0

exp

r
/
ϕ̄−1
c

c∗ϕ̄c
 |x− y|
log

4ϕj(|x−y|)
ϕc(|x−y|)

 r

ϕj(r)
dr

≤ c12c∗
a

c13

ϕc

(
|x−y|

log
4ϕj(|x−y|)
ϕc(|x−y|)

)
(

|x−y|
log

4ϕj(|x−y|)
ϕc(|x−y|)

)2

∫ K

0

exp

 r

c13

log
4ϕj(|x−y|)
ϕc(|x−y|)

|x− y|

 r

ϕj(r)
dr

≤ c12c∗
a

c13
A ≤ 1

2
.

The first inequality above follows from (2.6); in the second inequality we used
a < 1/2; the third inequality is a consequence of (2.5), and c13 depends on c∗
only; in the last second inequality we used (1.4) by choosing l small enough
and the constant A here is independent of a; and in the last inequality we take
a small enough. Therefore,

qK(t, x, y) ≤ c10[ϕ
−1
c (t)]−d exp

{
−s
2
|x− y|

}
≤ c10[ϕ

−1
c (t)]−d exp

− a|x− y|

2ϕ̄−1
c

(
t

|x−y|

)
.

Let JK′(x, y) := J(x, y) − JK(x, y) = J(x, y)1{|x−y|>K}. Then, it follows
from [3, Lemma 3.1(c)] and (1.1) that

q(t, x, y) ≤ qKt (x, y) + t∥JK′(x, y)∥∞

≤ c10[ϕ
−1
c (t)]−d exp

− a|x− y|

2ϕ̄−1
c

(
t

|x−y|

)
+

c14t

|x− y|dϕj(|x− y|)
,

which along with the assertion in part (i) yields that

q(t, x, y) ≤ c15[ϕ
−1
c (t)]−d exp

− c16|x− y|

ϕ̄−1
c

(
t

|x−y|

)
.

(iv) Suppose that t ≤ t∗, where t∗ = c∗|x − y|ϕ̄c
(

|x−y|
log

4ϕj(|x−y|)
ϕc(|x−y|)

)
and c∗ is

small enough that is fixed later. Now, we choose s = b
|x−y| log

ϕj(|x−y|)
c−1
∗ t

, where
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b = 3 + 4d/3. For convenience, we set

M =M(|x− y|) := |x− y|
(
log

4ϕj(|x− y|)
ϕc(|x− y|)

)−1

,

and

D = D(|x− y|) :=
(
log

4ϕj(|x− y|)
ϕc(|x− y|)

)(
log

ϕj(|x− y|)
|x− y|ϕ̄c (M)

)−1

.

Then, taking l small enough so that lb ≤ 1/4,

2c9ts

|x− y|

∫ K

0

e2sr
r

ϕj(r)
dr

=
2c9tb

|x− y|2
log

ϕj(|x− y|)
c−1
∗ t

∫ K

0

exp

{
2br

|x− y|
log

ϕj(|x− y|)
c−1
∗ t

}
r

ϕj(r)
dr

≤ 2c9bt∗
|x− y|2

log
ϕj(|x− y|)
c−1
∗ t∗

∫ K

0

exp

{
2br

|x− y|
log

ϕj(|x− y|)
c−1
∗ t∗

}
r

ϕj(r)
dr

=
2c9bc∗ϕc (M)

M2
log

ϕj(|x− y|)
|x− y|ϕ̄c (M)

(
log

4ϕj(|x− y|)
ϕc(|x− y|)

)−1

×
∫ K

0

exp

{
2br

|x− y|
log

ϕj(|x− y|)
|x− y|ϕ̄c (M)

}
r

ϕj(r)
dr

≤ 2c9bc∗
D

ϕc (M)

M2

∫ K

0

exp

{
2b

D

r

M

}
r

ϕj(r)
dr

≤ c17c∗
ϕc (M)

M2

∫ K

0

exp
{c18r
M

} r

ϕj(r)
dr ≤ c17c∗A ≤ 1

2
.

Here, in the first inequality we used the facts that lb ≤ 1/4 and the function

t 7→ t1−2bl log(ϕj(|x− y|)/(c−1
∗ t))

is increasing for large |x−y|; in the third inequality we used the facts that D is
bounded from below by a positive constant (thanks to Lemma 2.3) and c17, c18
are independent of c∗; in the fourth inequality we used Assumption (H) and
the constant A can be independent of c∗ by taking l small enough; and in the
last inequality we take c∗ small enough. Hence,

qK(t, x, y) ≤ c19[ϕ
−1
c (t)]−d exp

{
−s
2
|x− y|

}
≤ c19[ϕ

−1
c (t)]−d exp

{
− b
2
log

ϕj(|x− y|)
c−1
∗ t

}
= c19[ϕ

−1
c (t)]−d

(
t

ϕj(|x− y|)

)b/2

≤ c20
t

|x− y|dϕj(|x− y|)
,
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where the last inequality follows from Lemma 2.1 and the fact that(
ϕc(|x− y|)

t

)2d/3

≤ c21

(
ϕj(|x− y|)

t

)b/2−1

.

With the estimate above, we then can apply [3, Lemma 3.1(c)] and get that

q(t, x, y) ≤ c22t

|x− y|dϕj(|x− y|)
.

Therefore, the proof is complete. □

3.3. Upper bounds for pn(x, y)

Now, we can state the main statement about upper bounds for transition
functions of the discrete time Markov chain (Xn)n≥0.

Theorem 3.4. Suppose that (1.1), (1.2) and Assumption (H) hold. Then,

there exist c0, c∗, C̃1 and C̃2 > 0 such that for all x, y ∈ Zd and n ≥ 1,

pn(x, y) ≤


C̃1[ϕ

−1
c (n)]−d, n ≥ c0ϕc(|x− y|),

C̃1[ϕ
−1
c (n)]−d exp

{
− C̃2|x−y|

ϕ̄−1
c ( n

|x−y| )

}
, n∗ ≤ n ≤ c0ϕc(|x− y|),

C̃1
n

|x−y|dϕj(|x−y|) , n ≤ n∗,

where n∗ := |x− y|ϕ̄c
(

c∗|x−y|
log

4ϕj(|x−y|)
ϕc(|x−y|)

)
.

Proof. We first note that for any x ∈ Zd,

(3.6) p2(x, x) =
∑
z∈Zd

p(x, z)p(z, x) ≥
∑

z∈Zd:|x−z|=1

p(x, z)p(z, x) ≥ α0 > 0,

where α0 is independent of x ∈ Zd. On the other hand, there is a constant
c0 ≥ 1 such that for any x, y ∈ Zd with |x− y| ≥ 2,

(3.7) p(x, y) ≤ c0p2(x, y).

Indeed, for any x, y ∈ Zd with |x− y| ≥ 2,

p2(x, y) =
∑
z∈Zd

p(x, z)p(z, y) ≥
∑

z∈Zd:|z−x|=1

p(x, z)p(z, y)

≥ c1p(x, y)
∑

z∈Zd:|z−x|=1

p(x, z) ≥ c2p(x, y),

where in the second inequality we used (1.6) and (1.1).
Regarding p2n(x, y) as the transition probabilities of the Markov chain

(X2n)n≥0, the jumping kernel of the continuous time Markov chain (Ỹt)t≥0

corresponding to (X2n)n≥0 is comparable with p2(x, y) and satisfies (1.1) (pos-
sibly with different constants). Denote by q̃(t, x, y) the heat kernel of the

process (Ỹt)t≥0. According to Proposition 3.3, q̃(t, x, y) enjoys the same upper
bounds as those for q(t, x, y) that are stated in (3.4) (possibly with different
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constants). Furthermore, it follows from (3.6) and [14, Theorem 3.6] that there
exists a constant C(α0) > 0 such that for all n ≥ 1 and x, y ∈ Zd,

p2n(x, y) ≤ C(α0)q̃(2n, x, y).

Therefore, the desired assertion holds for even n.
Clearly, the assertion holds with n = 1. Next, we consider the estimate for

p2k+1(x, y) for any k ≥ 1. When |x− y| ≤ 4,

(3.8) p2k+1(x, y) =
∑
z∈Zd

p(x, z)p2k(z, y) ≤ c3[ϕ
−1
c (2k)]−d.

When |x− y| > 4, by (3.7),

p2k+1(x, y) =
∑
z∈Zd

p(x, z)p2k(z, y)

=
∑

z∈Zd:|x−z|≥2

p(x, z)p2k(z, y) +
∑

z∈Zd:|x−z|<2

p(x, z)p2k(z, y)

≤ c0
∑
z∈Zd

p2(x, z)p2k(z, y) + sup
z∈Zd:|x−z|<2

p2k(z, y)

= c0p2k+2(x, y) + sup
z∈Zd:|x−z|<2

p2k(z, y),

which along with (3.8) yields the desired assertion for odd n by adjusting the
constants involved if necessary. □

Remark 3.5. According to Theorem 3.4, under (1.1), (1.2) and Assumption
(H), there exist c1, c2 > 0 such that for all x, y ∈ Zd and n ≥ 1,

pn(x, y) ≤ c1

(
[ϕ−1

c (n)]−d exp

{
− c2|x− y|
ϕ̄−1
c ( n

|x−y| )

}
+

n

|x− y|dϕj(|x− y|)

)
.

4. Lower bounds for transition probabilities

In this section, we consider lower bounds for the transition probabilities
pn(x, y). The section is split into three parts.

4.1. On-diagonal lower bounds

For any B ⊂ Zd, set τB := inf{n ≥ 1 : Xn /∈ B}.

Lemma 4.1. Suppose that (1.1), (1.2) and Assumption (H) hold. Then, there
exists a constant A ≥ 1 such that for all n ≥ 1 and x ∈ Zd,

(4.1) Px(Xn ∈ B(x,Aϕ−1
c (n))c) ≤ 1/4.

Consequently,

Px(τB(x,Aϕ−1
c (n)) ≤ n) ≤ 1/2.
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Proof. For fixed x ∈ Zd and n ≥ 1, set r = Aϕ−1
c (n) and B = B(x, r) for some

A > 0. Then, according to Theorem 3.4 and Remark 3.5,

Px(Xn ∈ Bc)

=
∑
y∈Bc

pn(x, y) ≤
∞∑
i=1

∑
2i−1r≤|x−y|<2ir

pn(x, y)

≤ c1

∞∑
i=1

∑
2i−1r≤|x−y|<2ir

[
[ϕ−1

c (n)]−d exp

(
− c0|x−y|
ϕ̄−1
c ( n

|x−y| )

)
+

n

|x−y|dϕj(|x−y|)

]
=: c1(I1 + I2).

Note that

I1 ≤
∞∑
i=1

∑
2i−1r≤|x−y|<2ir

[ϕ−1
c (n)]−d exp

− c02
i−1Aϕ−1

c (n)

ϕ̄−1
c

(
n

2i−1Aϕ−1
c (n)

)


=
∞∑
i=1

∑
2i−1r≤|x−y|<2ir

[ϕ−1
c (n)]−d exp

−c0
ϕ̄−1
c

[
ϕ̄c(2

i−1Aϕ−1
c (n))

]
ϕ̄−1
c

(
n

2i−1Aϕ−1
c (n)

)


≤
∞∑
i=1

∑
2i−1r≤|x−y|<2ir

[ϕ−1
c (n)]−d exp

{
−c2

ϕ̄c
(
2i−1Aϕ−1

c (n)
)

n
2i−1Aϕ−1

c (n)

}

=

∞∑
i=1

∑
2i−1r≤|x−y|<2ir

[ϕ−1
c (n)]−d exp

{
−c2

ϕc
(
2i−1Aϕ−1

c (n)
)

ϕc(ϕ
−1
c (n))

}

≤
∞∑
i=1

∑
2i−1r≤|x−y|<2ir

[ϕ−1
c (n)]−d exp

{
−c3(2i−1A)3/2

}

≤ c4

∞∑
i=1

[ϕ−1
c (n)]−d exp

{
−c3(2i−1A)3/2

}
2idAd[ϕ−1

c (n)]d

≤ c5 exp
(
−c6A3/2

)
,

where the second inequality follows from (2.6), in the second equality we used
ϕc(r) = ϕ̄c(r)r, and in the third inequality we used (2.4). Here, the constants
c5 and c6 are independent of A. Letting A large enough, we obtain that c1I1 ≤
1/8. On the other hand,

I2 ≤
∞∑
i=1

∑
2i−1r≤|x−y|<2ir

n

(2i−1Aϕ−1
c (n))dϕj(2i−1Aϕ−1

c (n))

≤ c7

∞∑
i=1

n

ϕj(2i−1Aϕ−1
c (n))

≤ 2c7

∞∑
i=1

n

ϕc(2i−1Aϕ−1
c (n))
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≤ c8

∞∑
i=1

(2i−1A)−3/2 ≤ c9A
−3/2,

where in the third inequality we used the fact that 2ϕj(r) ≥ ϕc(r) for all r > 0,
the fourth inequality follows from (2.4) and the constant c9 is independent of
A. Similarly, we can see that c1I2 ≤ 1/8 by taking A large enough. Thus, the
proof of (4.1) is complete.

Furthermore, according to (4.1) (by taking A larger if necessary) and the
strong Markov property,

Px(τB ≤ n) = Px (τB ≤ n, |X2n − x| ≤ r/2) + Px (τB ≤ n, |X2n − x| > r/2)

≤ Px (τB ≤ n, |X2n − x| ≤ r/2) + Px (|X2n − x| > r/2)

≤ sup
z∈B(x,r/2)c

m≤n

Pz (X2n−m ∈ B(z, r/2)c) +
1

4
≤ 1

2
.

The proof is complete. □

For any subset B ⊂ Zd, set pBn (x, y) = P
x(Xn = y, τB > n) for any x, y ∈ B;

and pBn (x, y) = 0 when x /∈ B or y /∈ B. It is clear that pBn (x, y) ≤ pn(x, y) for
all x, y ∈ Zd and n ≥ 1.

Proposition 4.2. Suppose that (1.1), (1.2) and Assumption (H) hold. Then,
there exists C1 > 0 such that for all x ∈ Zd and n ≥ 1,

p2n(x, x) ≥ C1[ϕ
−1
c (n)]−d.

Proof. Let A be the constant in Lemma 4.1. According to Lemma 4.1, for all
x ∈ Zd and n ≥ 1,

Px(τB(x,Aϕ−1
c (n)) ≤ n) ≤ 1/2.

Then, by the symmetry of pn(x, y) and the Cauchy-Schwarz inequality, for all
x ∈ Zd and n ≥ 1,

p2n(x, x) =
∑
y∈Zd

pn(x, y)pn(y, x) =
∑
y∈Zd

pn(x, y)
2

≥
∑

y∈B(x,Aϕ−1
c (n))

p
B(x,Aϕ−1

c (n))
n (x, y)2

≥ 1∑
y∈B(x,Aϕ−1

c (n))

 ∑
y∈B(x,Aϕ−1

c (n))

p
B(x,Aϕ−1

c (n))
n (x, y)

2

=
1∑

y∈B(x,Aϕ−1
c (n))

[Px(τB(x,Aϕ−1
c (n)) > n)]2

≥ c1

[ϕ−1
c (n)]d

(
1− Px(τB(x,Aϕ−1

c (n)) ≤ n)
)2

≥ c2[ϕ
−1
c (n)]−d.

The proof is complete. □
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4.2. Near-diagonal lower bounds

Proposition 4.3. Suppose that (1.1), (1.2) and Assumption (H) hold. Then,
there exist constants c0, c1 > 0 such that for all x, y ∈ Zd and n ≥ 1 with
c0ϕ

−1
c (n) ≥ |x− y|,

pn(x, y) ≥ c1[ϕ
−1
c (n)]−d.

Proof. For any x ∈ Zd, n ≥ 1 and l > 0, set B := B(x, lϕ−1
c (n)). Since

pn(x, y) ≥ pBn (x, y), it suffices to show that there are constants c0, c1, l > 0
such that for all x, y ∈ Zd and n ≥ 1 with c0ϕ

−1
c (n) ≥ |x− y|,

pBn (x, y) ≥ c1[ϕ
−1
c (n)]−d.

For any subset B ⊂ Zd, let qBt (x, y) be the (Dirichlet) heat kernel of the
process (Yt)t≥0 with the Dirichlet boundary Bc. Then, according to [11, Defi-
nition 1.10(vi)] and [11, Proposition 4.1], there exist ε ∈ (0, 1) and c2 > 0 such
that for any x ∈ Zd, 0 < t ≤ ϕc(εr) and y ∈ B

(
x, εϕ−1

c (t)
)
,

(4.2) q
B(x,r)
t (x, y) ≥ c2[ϕ

−1
c (t)]−d.

Indeed, for the continuous time process (Yt)t≥0 of the present paper, it is clear
that the upper bound for the jumping kernel is satisfied (see [11, Definition 1.3]).
On the one hand, it follows from the argument of [11, Example 5.3], the cut-off
Sobolev inequality holds; on the other hand, according to [1, Proposition 3.2]
and the standard discretization method, we can see that the Poincaré inequality
is also fulfilled. Thus, [11, Proposition 4.1] applies to the process (Yt)t≥0.

Recall that Yt := XN(t) for any t ≥ 0, where N(t) is a standard Poisson

process independent of (Xn)n≥0. Then, for all y ∈ B(x, εϕ−1
c (n/2)),

pBn (x, y) = P
x(Xn = y, τB > n)

= Px

(
sup
k≤n

|Xk − x| ≤ lϕ−1
c (n), Xn = y

)
=

1∫ n

n/2

P(N(t) = n) dt

×
∫ n

n/2

Px

(
sup
k≤n

|Xk − x| ≤ lϕ−1
c (n), Xn = y,N(t) = n

)
dt

=
1∫ n

n
2

P(N(t) = n) dt

∫ n

n/2

Px

(
sup
s≤t

|Ys − x| ≤ lϕ−1
c (n), Yt = y

)
dt

=
1∫ n

n/2

P(N(t) = n) dt

∫ n

n/2

q
B(x,lϕ−1

c (n))
t (x, y) dt

≥ 2

n

∫ n

n/2

q
B(x,lϕ−1

c (n))
t (x, y) dt.



TRANSITION PROBABILITIES OF SYMMETRIC MARKOV CHAINS 559

Now, we take l ≥ ε−1 and c0 ≤ ε/2. Then, by (4.2), for all x, y ∈ Zd and
n ≥ 1 with c0ϕ

−1
c (n) ≥ |x− y|,

pBn (x, y) ≥
2

n

∫ n

n/2

c2[ϕ
−1
c (t)]−d dt ≥ c3[ϕ

−1
c (n)]−d.

The proof is complete. □

4.3. Off-diagonal lower bounds

In this part, we will establish off-diagonal lower bounds for pn(x, y).

Proposition 4.4. Suppose that (1.1), (1.2) and Assumption (H) hold. Then
there are constants C0, c1, c2 > 0 such that for all x, y ∈ Zd and n ≥ 1 with
|x− y| ≥ C0ϕ

−1
c (n), it holds that

pn(x, y) ≥ c1[ϕ
−1
c (n)]−d exp

− c2|x− y|

ϕ̄−1
c

(
n

|x−y|

)
.

Proof. Take c∗ = ((c0/12) ∧ 1) ∈ (0, 1], where c0 > 0 is the constant in Propo-
sition 4.3. For any x, y ∈ Zd and n ≥ 1 so that n ≤ ϕc(|x− y|/c∗), let ℓ be the
positive integer such that

(4.3) ϕc

(
|x− y|
c∗(ℓ+ 1)

)
< n ≤ ϕc

(
|x− y|
c∗ℓ

)
.

In particular,

(4.4)
nℓ

|x− y|
≃ ϕ̄c

(
|x− y|
ℓ

)
;

that is,

(4.5) ℓ ≃ |x− y|

ϕ̄−1
c

(
nℓ

|x−y|

) .
Next, let {xi}0≤i≤ℓ be a sequence on Zd joining x0 = x and xℓ = y such

that

|xi − xi−1| ≤
√
2|x− y|
ℓ

, 1 ≤ i ≤ ℓ.

Thus, for any 0 ≤ i ≤ ℓ, and yi ∈ B(xi, |x− y|/ℓ),

|yi − yi−1| ≤ |yi − xi|+ |xi − xi−1|+ |xi−1 − yi−1| ≤
3
√
2|x− y|
ℓ

≤ 12c∗ϕ−1
c (n) ≤ c0ϕ

−1
c (n)

holds for all 1 ≤ i ≤ ℓ, where in the third inequality we used the fact that
|x − y|/ℓ ≤ 2c∗ϕ−1

c (n), thanks to (4.3). Hence, according to Proposition 4.3,
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there exist constants C ∈ (0, 1) and C0 > 0 such that

pn(yi−1, yi) ≥ C
[
ϕ−1
c (n)

]−d
, 1 ≤ i ≤ ℓ− 1,

pn+k(yℓ−1, yℓ) ≥ C
[
ϕ−1
c (n+ k)

]−d

≥ C0C
[
ϕ−1
c (n)

]−d
, 0 ≤ k ≤ n− 1,

(4.6)

where the last inequality follows from (2.4). Therefore, for any k ∈ {0, 1, . . .,
n− 1},

pℓn+k(x, y)

=
∑

y1∈Zd

· · ·
∑

yℓ−1∈Zd

pn(x, y1)pn(y1, y2) · · · pn+k(yℓ−1, y)

≥
∑

y1∈B(x1,
|x−y|

ℓ )

· · ·
∑

yℓ−1∈B(xℓ−1,
|x−y|

ℓ )

pn(x, y1)pn(y1, y2) · · · pn+k(yℓ−1, y)

≥ C0

∑
y1∈B(x1,

|x−y|
ℓ )

· · ·
∑

yℓ−1∈B(xℓ−1,
|x−y|

ℓ )

Cℓ
[
ϕ−1
c (n)

]−dℓ

≥ C0C
ℓ
[
ϕ−1
c (n)

]−dℓ
c1

(
|x− y|
ℓ

)d(ℓ−1)

≥ c2C
ℓ
[
ϕ−1
c (n)

]−d

≥ c3
[
ϕ−1
c (ℓn)

]−d
exp

−c4
|x− y|

ϕ̄−1
c

(
nℓ

|x−y|

)


≥ c3
[
ϕ−1
c (ℓn)

]−d
exp

−c5
|x− y|

ϕ̄−1
c

(
2nℓ

|x−y|

)


≥ c6
[
ϕ−1
c (ℓn+ k)

]−d
exp

−c7
|x− y|

ϕ̄−1
c

(
ℓn+k
|x−y|

)
 ,

where the second inequality follows from (4.6), in the fourth inequality we used
(4.3), the sixth inequality follows from (2.6), and in the last inequality we used
(4.5) and the constants c6, c7 are independent of n, k and ℓ.

Furthermore, according to (4.4), there are constants c8, c9 > 0 such that for
any positive integer ℓ,

nℓ ≤ c8|x− y|ϕ̄c
(
|x− y|
ℓ

)
≤ c9ϕc(|x− y|).

This along with the estimate above yields the desired assertion. □

Proposition 4.5. Suppose that (1.1), (1.2) and Assumption (H) hold. Then,
there are constants c1, C0 > 0 such that for any x, y ∈ Zd and n ≥ 1 with
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|x− y| ≥ C0ϕ
−1
c (n),

pn(x, y) ≥
c1n

|x− y|dϕj(|x− y|)
.

Proof. Let A and c0 be the constants in Lemma 4.1 and Proposition 4.3, re-
spectively. Take l0 ≥ 1 such that 2Aϕ−1

c (n) ≤ c0ϕ
−1
c (l0n) for all n ≥ 1. Then,

for any x, y ∈ Zd with |x− y| ≥ Aϕ−1
c (n) and k ∈ {0, 1, . . . , n− 1},

p(l0+1)n+k(x, y) =
∑
z∈Zd

pn(x, z)pl0n+k(z, y)

≥
∑

|z−y|≤2Aϕ−1
c (n)

pn(x, z)pl0n+k(z, y)

≥

(
inf

|z−y|≤2Aϕ−1
c (n)

pl0n+k(z, y)

) ∑
|z−y|≤2Aϕ−1

c (n)

pn(x, z)

≥

(
inf

|z−y|≤c0ϕ
−1
c (l0n+k)

pl0n+k(z, y)

) ∑
|z−y|≤2Aϕ−1

c (n)

pn(x, z)

≥ c1[ϕ
−1
c (l0n+ k)]−dPx

(
Xn ∈ B

(
y, 2Aϕ−1

c (n)
))

≥ c2[ϕ
−1
c (n)]−dPx

(
Xn ∈ B

(
y, 2Aϕ−1

c (n)
))
,

where the fourth inequality follows from Proposition 4.3 and c1 is independent
of n, l0 and k.

On the other hand, set B := B(y,Aϕ−1
c (n)) and define σB := inf{n ≥ 1 :

Xn ∈ B}. According to the strong Markov property, for all n ≥ 2,

Px
(
Xn ∈ B(y, 2Aϕ−1

c (n))
)

≥ Px

(
σB ≤ [n/2], sup

σB≤k≤n
|Xk −XσB

| ≤ Aϕ−1
c (n)

)
= Ex

[
1{σB≤[n/2]}EXσB

(
sup

σB≤k≤n
|Xk −XσB

| ≤ Aϕ−1
c (n)

)]
≥ Px (σB ≤ [n/2]) inf

z∈B
Pz
(
τB(z,Aϕ−1

c (n)) > n
)

≥ 1

2
Px (σB ≤ [n/2]) ,

where the last inequality follows from Lemma 4.1. Furthermore, by [4, Lemma
3.2],

Px (σB ≤ [n/2])

≥ Px
(
X[n/2]∧τ

B(x,Aϕ
−1
c (n))

∈ B
)
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= Ex

 ∑
0≤k≤

(
[n/2]∧τ

B(x,Aϕ
−1
c (n))

)
−1

1{Xk∈B}



= Ex

 ∑
0≤k≤

(
[n/2]∧τ

B(x,Aϕ
−1
c (n))

)
−1

∑
z∈B

J(Xk, z)



≥ c3E
x

 ∑
0≤k≤

(
[n/2]∧τ

B(x,Aϕ
−1
c (n))

)
−1

∑
z∈B

1

|Xk − z|dϕj(|Xk − z|)


≥ c4[n/2]P

x(τB(x,Aϕ−1
c (n)) ≥ [n/2])[ϕ−1

c (n)]d
1

|x− y|dϕj(|x− y|)

≥ c5[ϕ
−1
c (n)]d

n

|x− y|dϕj(|x− y|)
,

where the fourth inequality we used the fact that for all z ∈ B
(
y,Aϕ−1

c (n)
)

and 0 ≤ k ≤
(
[n/2] ∧ τB(x,Aϕ−1

c (n))

)
− 1,

|Xk − z| ≤ |Xk − x|+ |x− y|+ |y − z| ≤ |x− y|+ 2Aϕ−1
c (n) ≤ 3|x− y|.

Thus, combining with all the estimates above, we obtain that for any n ≥ 2,
k ∈ {0, 1, . . . , n− 1} and any x, y ∈ Zd with |x− y| ≥ Aϕ−1

c (n),

p(l0+1)n+k(x, y) ≥ c6
n

|x− y|dϕj(|x− y|)
.

This immediately yields that there are constants n0 ≥ 1 and c7 > 0 so that for
any x, y ∈ Zd and n ≥ n0 with |x− y| ≥ Aϕ−1

c (n),

pn(x, y) ≥ c7
n

|x− y|dϕj(|x− y|)
.

On the other hand, for any odd n with 1 ≤ n ≤ n0 − 1 and any x, y ∈ Zd

with |x− y| ≥ c8ϕ
−1
c (n),

pn(x, y) =
∑

z1,...,zn−1∈Zd

p(x, z1) · · · p(zn−1, y)

≥
∑

|z1−x|=1,z2=x,|z3−x|=1,z4=x,...,zn−1=x

p(x, z1) · · · p(zn−1, y)

≥c9p(x, y) ≥ c10
n

|x− y|dϕj(|x− y|)
.
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Similarly, for any even n with 1 ≤ n ≤ n0 − 1 and any x, y ∈ Zd with |x− y| ≥
c8ϕ

−1
c (n),

pn(x, y) =
∑

z1,...,zn−1∈Zd

p(x, z1) · · · p(zn−1, y)

≥
∑

|z1−x|=1,z2=x,|z3−x|=1,z4=x,...,zn−2=x,|zn−1−x|=1

p(zn−1, y)

≥c11p(x, y) ≥ c12
n

|x− y|dϕj(|x− y|)
.

Putting all the estimates together, we can prove the desired assertion. □

Finally, we can present the main statement about lower bounds for transition
functions pn(x, y).

Theorem 4.6. Suppose that (1.1), (1.2) and Assumption (H) hold. Then,
there exist c0, c∗, C1 and C2 > 0 such that for all x, y ∈ Zd and n ≥ 1,

pn(x, y) ≥


C1[ϕ

−1
c (n)]−d, n ≥ c0ϕc(|x− y|),

C1[ϕ
−1
c (n)]−d exp

{
− C2|x−y|

ϕ̄−1
c ( n

|x−y| )

}
, n∗ ≤ n ≤ c0ϕc(|x− y|),

C1
n

|x−y|dϕj(|x−y|) , n ≤ n∗,

where n∗ := |x− y|ϕ̄c
(

c∗|x−y|
log

ϕj(|x−y|)
ϕc(|x−y|)

)
.

Proof. According to Propositions 4.3, 4.4 and 4.5, there are constants c0, C1,
C2, C3 > 0 such that for all x, y ∈ Zd and n ≥ 1 with n ≥ c0ϕc(|x− y|),

pn(x, y) ≥ C1ϕ
−1
c (n)−d;

and for all x, y ∈ Zd and n ≥ 1 with n ≤ c0ϕc(|x− y|),

pn(x, y) ≥ C2

[
ϕ−1
c (n)−d exp

{
− C3|x− y|
ϕ̄−1
c ( n

|x−y| )

}
+

n

|x− y|dϕj(|x− y|)

]
.

This along with the conclusion in part (i) of the proof for Proposition 3.3 yields
the desired assertion. □

Finally, Theorem 1.2 is a direct consequence of Theorems 3.4 and 4.6.

Acknowledgements. I would like to express my great gratitude to the anony-
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