• Title/Summary/Keyword: Symbol Offset

Search Result 177, Processing Time 0.026 seconds

An efficient Frequency and Symbol Synchronization Scheme for DVB-T System (DVB-T 시스템을 위한 효율적인 주파수 및 심볼동기 구조)

  • Lee, Hyung-Wook;Kim, Ki-Yun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2C
    • /
    • pp.170-183
    • /
    • 2002
  • This paper proposes an efficient frequency and symbol synchronization structure which could solve problems of the conventional methods to implement DVB-T receive modem which adopted OFDM transmission method. The main considerations of frequency synchronization algorithms are that the frequency tracking performance is not stable enough, and lots of symbols are required, especially when the decimal part of normalized frequency offset (which original frequency offset is divided by the subcarrier spacing) is around $\pm$0.5 to solve these problems, we propose an efficient frequency offset is divided by the subcarrier spacing) is around $\pm$0.5 by using the average of coarse synchronization over several symbol. Also, we suggest a new symbol synchronization structure which is easy to implement without performance degradation in multipath fading channel with only coarse symbol synchronization by making window offset to the range of guard interval in contrast to the conventional structure of dividing symbol synchronization in fine and coarse mode during synchronization. By extensive simulation, we have shown the superiority of the proposed schemes.

System Performance with Synchronization Errors in Distributed Beamforming Systems (분산 빔포밍을 이용한 시스템에서 동기에러에 의한 시스템 성능 영향 분석)

  • Kim, Haesoo;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.452-459
    • /
    • 2015
  • Three synchronization issues, i.e., phase, frequency, and symbol time, have to be properly controlled to achieve distributed beamforming gain. In this paper, the impacts of synchronization errors in distributed beamforming are analyzed for both single-carrier and OFDM systems. When the channel is constant over a symbol duration, the performance degradation due to phase offset is the same for both single-carrier and OFDM systems. For symbol timing offset in OFDM systems, high frequency subcarriers are more susceptible as compared to low frequency ones. Frequency offset is critical in OFDM systems since it leads to interference from the other subcarriers as well as power loss in the desired signal.

SNR Enhancement Algorithm Using Multiple Chirp Symbols with Clock Drift for Accurate Ranging

  • Jang, Seong-Hyun;Kim, Yeong-Sam;Yoon, Sang-Hun;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.841-848
    • /
    • 2011
  • A signal-to-noise ratio (SNR) enhancement algorithm using multiple chirp symbols with clock drift is proposed for accurate ranging. Improvement of the ranging performance can be achieved by using the multiple chirp symbols according to Cramer-Rao lower bound; however, distortion caused by clock drift is inevitable practically. The distortion induced by the clock drift is approximated as a linear phase term, caused by carrier frequency offset, sampling time offset, and symbol time offset. SNR of the averaged chirp symbol obtained from the proposed algorithm based on the phase derotation and the symbol averaging is enhanced. Hence, the ranging performance is improved. The mathematical analysis of the SNR enhancement agrees with the simulations.

Symbol Timing & Carrier Frequency Offset Estimation Method for UWB MB-OFDM System (UWB MB-OFDM 시스템을 위한 심볼 타이밍 및 반송파 주파수 오프셋 추정 기법)

  • Kim Jung-Ju;Wang Yu-Peng;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.232-239
    • /
    • 2006
  • In this paper, we analyze the preamble model for Wireless PAN(WPAN) in proposed Ultra WideBand(UWB) Multi-Band OFDM(MB-OFDM) system of IEEE 802.15.3a standard. Besides, we propose effective Carrier Frequency Offset and Symbol Timing Offset Estimation algorithm which offers enhanced performance, and analyze its performance using Detection Probability, False Alarm Probability, Missing Probability, Mean Acquisition Time and MSE(Mean Square Error) through simulation in AWGN and UWB channel environments.

Performance of Direct-Conversion Receiver with AC-Coupling in DC-Offset interference environment (DC-Offset 간섭환경에서 AC-Coupling을 갖는 직접변환 수신기의 성능)

  • 성봉훈;송윤정;김영완;김내수;서종수
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.9-14
    • /
    • 2002
  • Direct-conversion receiver(DCR) architecture has superior advantages in size, cost, and power over superheterodyne receiver architectures. However, the use of direct-conversion receiver architecture has been limited due to the direct-current offset noise. The ac coupling, which is used to overcome the direct-current offset noise, causes an inter-symbol interference(ISI), whose effects can be effectively mitigated using an equalizer. In this paper, the performance of a direct-conversion receiver with ac coupling in the presence of direct-current offset is analyzed via computer simulation. The simulation result shows that by using decision feedback equalizer with LMS(Least Mean Square) algorithm, signal-to-noise ratio loss of the direct-conversion receiver compared to the idea receiver can be reduced to less than 1㏈ for corner frequencies as large as 10% of the symbol rate.

  • PDF

Integer Frequency Offset Estimation using PN Sequence within Training Symbol for OFDM System (PN 시퀀스의 위상추적을 통한 Orthogonal Frequency Division Multiplexing 신호의 정수배 주파수 옵셋 추정)

  • Ock, Youn Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.290-297
    • /
    • 2014
  • The synchronization of OFDM receiver is consisted of symbol timing offset(STO) estimation in time domain and carrier frequency offset(CFO) estimation in frequency domain. This paper proposes new algorithm for correcting the integer CFO after we have done correcting the STO and partial CFO. ICFO must be corrected, since the ICFO lead to degrade bit error rate(BER) of demodulation performance. The PN sequence has information which is subcarrier order since the modified PN sequence, length is same subcarrier, is used in this paper and is modulated each subcarrier by each chip. Thus the receiver track phase of PN sequence after FFTin order to find the subcarrier frequency offset. The proposed algorithm is faster and more simple than convenient methode as measuring carrier energy.

A Study on the ZP-OFDM System Robust to Symbol Timing Offset (심볼 타이밍 옵셋에 강건한 ZP-OFDM 시스템에 관한 연구)

  • Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1042-1046
    • /
    • 2011
  • In this paper, we analyze the STO (Symbol Timing Offset) problem in conventional ZP-OFDM (Zero Padding-Orthogonal Frequency Division Multiplexing) systems and propose a robust ZP-OFDM system with bi-directional overlap-add scheme to overcome the problem. The proposed ZP-OFDM system is able to preserve the orthogonality between subcarriers and reduce the interference from other ZP-OFDM symbols due to the BOA scheme, which exploits both ZP intervals of the previous and the current ZP-OFDM symbols, even though serious STOs result from inaccurate symbol timing synchronization. Simulation results verify that the proposed ZP-OFDM system is superior to the conventional ZP-OFDM system.

Efficient Estimation and Compensation of CFO and STO in Multi-carrier Communication System (다중 반송파 통신 시스템에서 효과적인 CFO와 STO추정 및 보상방법)

  • Lee, Hui-Kyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.441-449
    • /
    • 2011
  • Sample timing offset (STO) and carrier frequency offset (CFO) are caused by inter-symbol interference (ISI), inter-carrier interference (ICI) and phase error in orthogonal frequency division multiplexing (OFDM) system. OFDM characteristic is sensitive about STO and CFO. So when ICI occurs, compensation is hard and complex equalizer is needed. In this paper, we propose an effective correction method using feedback process with pilot and synchronization symbol. After feedback with estimated value in frequency domain, STO and CFO are corrected by control sample & and holder and oscillator. As a result of simulation, we confirm that STO and CFO can be corrected without equalizer through feedback.

Transmission Performance of Half-Symbol-Rate-Carrier Offset QPSK Modulation in Band-limited Channels

  • Yeo, Hyeop-Goo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.152-156
    • /
    • 2009
  • This paper examines the BER performance of the recently proposed half-symbol-rate-carrier (HSRC) offset quadrature phase-shift-keying (OQPSK) receiver for high-speed data communication. A modified demodulation technique using a bit-time period signal integration, the bit-error-rate (BER) performance of the HSRC-OQPSK signal improves more than 4dB compared to that of a demodulation technique using a symbol-time period integration. This paper also examines the BER performance of modified demodulation with various band-limited channels modeled using low-pass filters, and the three different data-rate systems are simulated and compared with the performance of the system using the conventional demodulation technique.

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.