• Title/Summary/Keyword: Symbol Error Probability

Search Result 115, Processing Time 0.035 seconds

Simple Lower Bound for MPSK Symbol Error Probability (M진 위상 천이 변조 심볼 오류 확률의 간단한 하한식)

  • 윤동원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.352-357
    • /
    • 2000
  • The symbol error probability for the coherent detection of MPSK signals in additive white Gaussian noise(AWGN) can be evaluated exactly for M=2 and M=4. The MPSK symbol error probability bounds obtained in the past are simple to calculate, but not accurate. More recently, very tight bounds have been proposed, but they are complex to calculate. In this paper to obtain a simple and accurate lower bound for coherent MPSK symbol error probability in AWGN, we consider the symbol error probability for MPSK in Nakagami fading case first. Then as the Nakagami fading index m approaches to infinity, we obtain the symbol error probability for the MPSK in AWGN.

  • PDF

Closed-form Expression for the Symbol Error Probability of Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation (QAM 변조방식을 갖는 직교 시공간 블록 부호의 심볼 오율)

  • 김상효;강익선;노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.561-569
    • /
    • 2003
  • In this paper, for my linear orthogonal space-time block including the orthogonal space-time codes introduced by Alamouti[1], Tarokh[14], and Xia[11], the exact expression for the pairwise error probability in the slow Rayleigh fading channel is derived in terms of the message symbol distance between two message vectors rather than the codeword symbol distance between two transmitted codeword matrices. Using the one-dimensional component symbol error probability, the exact closed form expressions for the symbol error probability of linear orthogonal space-time codes are derived for QPSK, 16-QAM, 64-QAM, and 256-QAM.

Computing the Average Symbol Error Probability of the MPSK System Having Quadrature Error

  • Park, Seung-Keun;Cho, Sung-Ho
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.793-795
    • /
    • 2006
  • When quadrature error exists, the shape of the M-ary phase shift keying (MPSK) signal constellation becomes skewed-elliptic. Each MPSK symbol takes on a different symbol error probability (SEP) value. The analytical results presented thus far have been derived from studies which examined the SEP problem assuming that the SEP of each MPSK symbol is equally likely; therefore, those results should not be treated as offering a complete solution. In this letter, we present a new and more complete solution to the SEP problem of MPSK by relaxing the above assumption and finding the expressions for the average as well as individual SEP in the presence of quadrature error.

  • PDF

An Analysis of Bit Error Probability of Reed-Solomon/Trellis concatenated Coded-Modulation System (Reed-Solomon/Trellis 연접 부호변조 시스템의 비트오율 해석)

  • 김형락;이상곤;문상재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.9
    • /
    • pp.34-43
    • /
    • 1994
  • The unequal symbol error probability of TCM(trellis coded modulation) is analyzed and applied to the derivation of bit error probability of /RS/Trellis concatenated coded-modulation system. An upper bound of the symbol error probability of TCM concatenated with RS code is obtained by exploiting the unequal symbol error probability of TCM, and it is applied to the derivation of the upper bound of the bit error probability of the RS/Trellis concatenated coded-modulation system. Our upper bounds of the concatenated codes are tighter than the earlier established other upper bounds.

  • PDF

An Analysis of Bit Error Probability of Reed-Solomon/Convolutional Concatenated Codes (Reed-Solomon/길쌈 연쇄부호의 비트오율해석)

  • 이상곤;문상재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.19-26
    • /
    • 1993
  • The bit error probability of Reed-Solomon/convolutional concatenated codes can be more exactly calculated by using a more approximate bound of the symbol error probability of the convolutional codes. This paper obtains the unequal symbol error bound of the convolutional codes, and applies to the calculation of the bit error probability of the concatenated codes. Our results are tighter than the earlier studied other bounds.

  • PDF

Noncentral F-Distribution for an M-ary Phase Shift Keying Wedge-Shaped Region

  • Kim, Jung-Su;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.345-347
    • /
    • 2009
  • This letter presents an alternative analytical expression for computing the probability of an M-ary phase shift keying (MPSK) wedge-shaped region in an additive white Gaussian noise channel. The expression is represented by the cumulative distribution function of known noncentral F-distribution. Computer simulation results demonstrate the validity of our analytical expression for the exact computation of the symbol error probability of an MPSK system with phase error.

  • PDF

SER Analysis of QAM with Space Diversity in Rayleigh Fading Channels

  • Kim, Chang-Joo;Kim, Young-Su;Jeong, Goo-Young;Mun, Jae-Kyung;Lee, Hyuck-Jae
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.25-35
    • /
    • 1996
  • This paper derives the symbol error probability for quadrature amplitude modulation(QAM) with L-fold space diversity in Rayleigh fading channels. Two combining techniques, maximal ratio combining(MRC) and selection combining(SC), are considered. The formula for MRC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise(AWGN) channel over a chi-square distribution with 2L degrees of freedom. The obtained formula overcomes the limitations of the earlier work, which has been limited only to deriving the symbol error rate(SER) of QAM with two branch MRC space diversity. The formula for SC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an AWGN channel over the distribution of the maximum signal-to noise ratio among all of the diversity channels for SC space diversity has been reported yet. Analytical results show that the probability of error decreases with the order of diversity gain per additional branch decreases as the number of branches becomes larger. On the other hand, the performance of 16 QAM with MRC becomes much better than that of SC as the number of branches becomes larger. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general space diversity. These results can be used to determine the order of diversity to achieve the desired SER in land mobile communication system employing QAM modulation.

  • PDF

Performance of Selective Decode-and-Forward Relay Networks with Partial Channel Information

  • Rui, Xianyi
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.139-141
    • /
    • 2010
  • In this letter, closed-form approximations for outage probability and symbol error rate are presented for a selective decode-and-forward relay network with partial channel information. An independent but not identically distributed Rayleigh fading environment is considered. Numerical and simulated results demonstrate the validity of the analytical results.

Exact Bit Error Probability of Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation

  • Kim, Sang-Hyo;Yang, Jae-Dong;No, Jong-Seon
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.253-257
    • /
    • 2008
  • In this paper, the performance of generic orthogonal space-time block codes (OSTBCs) introduced by Alamouti [2], Tarokh [3], and Su and Xia [11] is analyzed. We first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of an OSTBC. Utilizing the ODSEF and the bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon [9], the exact closed-form expressions for the BEP of linear OSTBCs with QAM in quasi-static Rayleigh fading channel are derived. We also derive the exact closed-form of the BEP for some OSTBCs which have at least one message symbol transmitted with unequal power via all transmit antennas.

An analysis of bit error probability of RS/trellis concatenated coded-modulation systems for mobile radio channel (이동통신 채널에서의 RS/trellis 연접 부호변조 시스템의 비트오율 해석)

  • 김왕길;이상곤;문상재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1546-1553
    • /
    • 1996
  • The bit error probability of RS/trellis concatenated coded-modualtion system in the mobile radio channel is analyzed. A new upper bound to the symbol error probability of the inner TCM in the mobile radio channel is obtained by exploiting the unequal symbol error probability of the TCM. This bound is applied to the derivation of the upper bound to the bit error probability of the concatenated coded-modulation system. An efficient way of searching distance spectrum of the TCM in mobile radio channel is devised. Our new bounds are tighter than the earlier studied other bounds.

  • PDF