• 제목/요약/키워드: Switching transients

검색결과 59건 처리시간 0.02초

Analysis of Transient Overvoltages within a 345kV Korean Thermal Plant

  • Yeo, Sang-Min;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.297-303
    • /
    • 2012
  • This paper presents the simulation results for the analysis of a lightning surge, switching transients and very fast transients within a thermal plant. The modeling of gas insulated substations (GIS) makes use of electrical equivalent circuits that are composed of lumped elements and distributed parameter lines. The system model also includes some generators, transformers, and low voltage circuits such as 24V DC rectifiers and control circuits. This paper shows the simulation results, via EMTP (Electro-Magnetic Transients Program), for three overvoltage types, such as transient overvoltages, switching transients, very fast transients and a lightning surge.

New Modeling of Switching Devices Considering Power Loss in Electromagnetic Transients Program Simulation

  • Kim, Seung-Tak;Park, Jung-Wook;Baek, Seung-Mook
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.592-601
    • /
    • 2016
  • This paper presents the modeling of insulated-gate bipolar transistor (IGBT) in electromagnetic transients program (EMTP) simulation for the reliable calculation of switching and conduction losses. The conventional approach considering the physical property of switching devices requires many attribute parameters and large computation efforts. In contrast, the proposed method uses the curve fitting and interpolation techniques based on typical switching waveforms and a user-defined component with variable resistances to capture the dynamic characteristics of IGBTs. Therefore, the simulation time can be efficiently reduced without losing the accuracy while avoiding the extremely small time step, which is required in simulation by the conventional method. The EMTP based simulation includes turn-on and turn-off transients of IGBT, saturation state, forward voltage of free-wheeling diode, and reverse recovery characteristics, etc. The effectiveness of proposed modeling for the EMTP simulation is verified by the comparison with experimental results obtained from practical implementation in hardware.

Self-Feeder Driver for Voltage Balance in Series-Connected IGBT Associations

  • Guerrero-Guerrero, A.F.;Ustariz-Farfan, A.J.;Tacca, H.E.;Cano-Plata, E.A.
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.68-78
    • /
    • 2019
  • The emergence of high voltage conversion applications has resulted in a trend of using semiconductor device series associations. Series associations allow for operation at blocking voltages, which are higher than the nominal voltage for each of the semiconductor devices. The main challenge with these topologies is finding a way to guarantee the voltage balance between devices in both blocking and switching transients. Most of the methods that have been proposed to mitigate static and dynamic voltage unbalances result in increased losses within the device. This paper introduces a new series stack topology, where the voltage unbalances are reduced. This in turn, mitigates the switching losses. The proposed topology consists of a circuit that ensures the soft switching of each device, and one auxiliary circuit that allows for switching energy recovery. The principle for the topology operation is presented and experimental tests are performed for two modules. The topology performs excellently for switching transients on each of the devices. The voltage static unbalances were limited to 10%, while the activation/deactivation delay introduced by the lower module IGBT driver takes place in the dynamic unbalances. Thus, the switching losses are reduced by 40%, when compared to hard switching configurations.

마이크로그리드 계통연계 스위치의 스위칭 과도상태 해석과 전력품질 향상을 위한 연구 (Studies of Switching Transients and Power Quality Improvement in Microgrid PCC Switch)

  • 정태영;백영식
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2142-2148
    • /
    • 2009
  • A microgrid is defined as two or more distributed generation or storage assets configured in a networks and capable of operation in parallel or independently form a larger electric gird, while providing continuous power to one or more end users. And when microgrid are separated from grid oprating protection devices by faults of the grid side, microsources should charge electrical power needs of loads in microgrid and operate maintaining power quality. The magnitude of the switching transients will vary based on voltage phase difference between microgrid and grid, when the microgrid is resynchronized to grid. In this paper, when microgrid is resynchronized to grid, we analyzed the existing problems for reducing switching transients of SS(Static Switch).

Switching Transient Shaping by Application of a Magnetically Coupled PCB Damping Layer

  • Hartmann, Michael;Musing, Andreas;Kolar, Johann W.
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.308-319
    • /
    • 2009
  • An increasing number of power electronic applications require high power density. Therefore, the switching frequency and switching speed have to be raised considerably. However, the very fast switching transients induce a strong voltage and current ringing. In this work, a novel damping concept is introduced where the parasitic wiring inductances are advantageously magnetically coupled with a damping layer for attenuating these unwanted oscillations. The proposed damping layer can be implemented using standard materials and printed circuit board manufacturing processes. The system behavior is analyzed in detail and design guidelines for a damping layer with optimized RC termination network are given. The effectiveness of the introduced layer is determined by layout parasitics which are calculated by application of the Partial Element Equivalent Circuit (PEEC) simulation method. Finally, simulations and measurements on a laboratory prototype demonstrate the good performance of the proposed damping approach.

Improved Circuit Model for Simulating IGBT Switching Transients in VSCs

  • Haleem, Naushath Mohamed;Rajapakse, Athula D.;Gole, Aniruddha M.
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1901-1911
    • /
    • 2018
  • This study presents a circuit model for simulating the switching transients of insulated-gate bipolar transistors (IGBTs) with inductive load switching. The modeling approach used in this study considers the behavior of IGBTs and freewheeling diodes during the transient process and ignores the complex semiconductor physics-based relationships and parameters. The proposed circuit model can accurately simulate the switching behavior due to the detailed consideration of device-circuit interactions and the nonlinear nature of model parameters, such as internal capacitances. The developed model is incorporated in an IGBT loss calculation module of an electromagnetic transient simulation program to enable the estimation of switching losses in voltage source converters embedded in large power systems.

Simulation of Capacitively Graded Bushing for Very Fast Transients Generated in a GIS during Switching Operations

  • Rao, M.Mohana;Rao, T. Prasad;Ram, S.S. Tulasi;Singh, B.P.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.36-42
    • /
    • 2008
  • In a gas insulated substation (GIS), Very Fast Transient Over-voltages (VFTOs) are generated due to switching operations and ground faults. These fast transients are associated with high frequency components of the order of a few hundreds of MHz. These transients may cause internal faults i.e., layer-to-layer faults or minor faults in a capacitively graded bushing, which is one of the important pieces of terminal equipment for GIS. In the present study, the PSPICE model has been developed to calculate the voltage distribution across the layers of 420kV graded bushing for high frequency pulses of rise time 1 to 50ns, which simulate the VFTO. For this simulation, an equivalent electrical network of bushing with different equivalent layers has been considered. The effect of different equivalent layers modeling circuits on the non-uniform voltage factor has been analysed. The influence of copper strip inductance on voltage distribution across layers has also been analysed for various rise times of high frequency transients. Finally, the leakage current of the bushing is calculated for evaluating the bushing condition under these transients.

Computer Aided Identification of Inter-Layer Faults in Gas Insulated Capacitively Graded Bushing during Switching

  • Rao, M.Mohana;Dharani, P.;Rao, T. Prasad
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.28-34
    • /
    • 2009
  • In a Gas Insulated Substation (GIS), Very Fast Transients (VFTs) are generated mainly due to switching operations. These transients may cause internal faults, i.e., layer-to-layer faults in a capacitively graded bushing as it is one of the most important terminal equipment for GIS. The healthiness of the bushing is generally verified by measuring its leakage current. However, the change in current magnitude/pattern is only marginal for different types of fault conditions. Leakage current monitoring (LCM) systems generate large amounts of data and computer aided interpretation of defects may be of great assistance when analyzing this data. In view of the above, ANN techniques have been used in this study for identification of these minor faults. A single layer perceptron network, a two layer feed-forward back propagation network and cascade correlation (CC) network models are used to identify interlayer faults in the bushing. The effectiveness of the CC network over perceptron and back propagation networks in identification of a fault has been analysed as part of the paper.

전력유도 현상과 차폐계수 (Phenomenon of Power Interference and Screening Factor)

  • 황종선;김영민;이경욱;김재준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.621-624
    • /
    • 2001
  • A metal sheath provides a cable with electrostatic screening and a degree of magnetic screening. The presence of a screen on a cable also reduces the induction arising from the high-frequency components of transients caused by power-line switching and also induced transients from lightning strokes; such transient induced voltages are of increasing importance with the increasing use of miniaturized telecommunication equipment with very small thermal capacity. This paper describes electrostatic induction and electromagnetic induction caused by power interference. Also screening factors are proposed.

  • PDF

The Role of a Wiring Model in Switching Cell Transients: the PiN Diode Turn-off Case

  • Jedidi, Atef;Garrab, Hatem;Morel, Herve;Besbes, Kamel
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.561-569
    • /
    • 2017
  • Power converter design requires simulation accuracy. In addition to the requirement of accurate models of power semiconductor devices, this paper highlights the role of considering a very good description of the converter circuit layout for an accurate simulation of its electrical behavior. This paper considers a simple experimental circuit including one switching cell where a MOSFET transistor controls the diode under test. The turn-off transients of the diode are captured, over which the circuit wiring has a major influence. This paper investigates the necessity for accurate modeling of the experimental test circuit wiring and the MOSFET transistor. It shows that a simple wiring inductance as the circuit wiring representation is insufficient. An adequate model and identification of the model parameters are then discussed. Results are validated through experimental and simulation results.