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Computer Aided Identification of Inter-Layer Faults
in Gas Insulated Capacitively Graded Bushing during Switching

M. Mohana Rao’, P.Dharani* and T. Prasad Rao*

Abstract — In a Gas Insulated Substation (GIS), Very Fast Transients (VFTs) are generated mainly
due to switching operations. These transients may cause internal faults, i.e., layer-to-layer faults in a
capacitively graded bushing as it is one of the most important terminal equipment for GIS. The
healthiness of the bushing is generally verified by measuring its leakage current. However, the change
in current magnitude / pattern is only marginal for different types of fault conditions. Leakage current
monitoring (LCM) systems generate large amounts of data and computer aided interpretation of de-
fects may be of great assistance when analyzing this data. In view of the above, ANN techniques have
been used in this study for identification of these minor faults. A single layer perceptron network, a two
layer feed-forward back propagation network and cascade correlation (CC) network models are used to
identify interlayer faults in the bushing. The effectiveness of the CC network over perceptron and back
propagation networks in identification of a fault has been analysed as part of the paper.
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1. Introduction

SFg gas-to-air capacitively graded bushing is one of the
most important modules of the Gas Insulated Substation
(GIS). In this type of substation, two types of bushing are
commonly used depending on the system voltage. The first is
the non-condenser bushing. The second is the capacitively
graded bushing. In non-condenser bushings, the electrical
stress distribution is not uniform through insulation or along
its surface. Concentration of stress in the insulation may give
rise to partial discharge (PD) and may reduce its life. Fur-
thermore, high axial stress may result in surface flashovers.
To overcome the above problems, electrical stresses are gen-
erally controlled by means of capacitively graded principles.
In this design, the insulation thickness is divided into a num-
ber of capacitors by using concentric conducting layers.

In a Gas Insulated Substation (GIS), Very Fast Transients
(VFTs) are generated mainly due to switching operations.
These transients are associated with frequency components in
the order of a few hundred MHz. The VFTs generated inter-
nally by a GIS propagate partly to overhead transmission
lines through a bushing. Thus, during switching operations,
transient voltages coupled to overhead transmission lines
may result in turn-to-turn or winding-to-winding breakdown
in transformers or layer-to-layer breakdown in capacitively
gradeed bushings connected to the GIS [1,4]. When the tran-
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sient voltage encounters the grading structure (comprising of
a large number of metallic layers insulated with polyethylene
terephthalate (PET) film), the incident travelling wave di-
vides among the concentric coaxial transmission lines formed
by the foils [4]. For the high frequencies of VFTs, the voltage
distribution across the layers of graded bushing may not be
uniform. Furthermore, continuous application of these oscil-
lating and aperiodic voltage transients to the capactively
graded bushing may cause discharges inside the bushing.
This phenomenon can progressively degrade the insulation
strength of the bushing.

Leakage current monitoring (LCM) systems generate large
amounts of data and computer aided interpretation of defects
has been found to be effective in recent years. Interpretation
is based on the analysis of statistical parameters extracted
from the data, particularly those related to amplitude, repeti-
tion rate and frequency spectrum. Neura} network (NN) tech-
niques are found to be effective for applications such as leak-
age current pattern recognition. A neural network consists of
layers of neurons which are interlinked by suitable weights.
During system training using a database of leakage current
patterns from known defect types, the weightages of neurons
are strengthened or weakened on the basis of required output.

In this study, an equivalent electrical network of the 420kV
SF, gas-to-air capacitively graded bushing is used to simulate
the leakage current waveforms for different inter-layer faults
of the bushing. Artificial Neural Network (ANN) techniques
have been employed to identify such minor faults in the ca-
pacitively graded bushing during switching operations in GIS.
The success rate of perceptron, feed-forward back propaga-
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tion and cascade correlation networks proposed in the study
for identifying faults has been calculated. Finally, the varia-
tion of the success rate of these networks for different sets of
training data has been analyzed as part of the study.

2. Modeling of the Bushing

420kV SF¢ gas-to-air capacitively graded bushings gener-
ally consist of 120 numbers of aluminium grading layers
separated by PET film with a diclectric constant (g,) of 2.8.
The basic structure of the capacitively graded bushing is
shown in Fig. 1. The layers form a system of coaxial cylin-
ders whose length increases from the outermost to the inner-
most one. The capacitance between the two adjacent layers is
constant and is about 60nF. The outermost layer is connected
to the external coaxial flange by means of a copper strip,
which has an inductance (L) of about 0.2uH [4].

Fig. 2 shows the equivalent circuit of graded bushing.
The capacitively graded layers are divided into a number of
equivalent layers. The diameter of each equivalent layer is
calculated in such a way that the capacitance between con-
secutive graded layers is constant. Each equivalent layer is
divided into a number of sections depending on its length.
Further, each section is represented by means of a [T-model
(L-C network). Finally, the bushing model is formed like a
cascade of I1 sections. The total capacitance of the actual
bushing, C,, must be shared among the N, equivalent layers.
The section capacitance (C,,) is calculated by dividing the
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Fig. 2. Equivalent Electrical network of a graded bushing

layer capacitance (C,,y) with the number of sections. The end
capacitance (C.) of the section is equal to half of the middle
or section capacitance. The inductance of each section (L) is
calculated by dividing the inductance of the equivalent layer
with the number of sections. To get a satisfactory compro-
mise between modeling simplicity and accuracy, sixty
equivalent co-axial layers have been considered to simulate
the capacitively graded bushing, which was discussed in de-
tail by authors at earlier work [5]. The PSPICE model devel-
oped based on the above equivalent circuit has been used to
calculate the leakage current through a 420 kV graded bush-
ing for high frequency transients which simulate VFTO. In
this study, transient voltage is simulated by means of an im-
pulse waveform of amplitude (420 KV¥2/A3) with a rise
time 3 ns and a tail time of 1us. For this excitation of bushing,
leakage current patterns are calculated by considering single
equivalent-layer fault and double equivalent-layer fault at
various layers of bushing.

3. Identification of Inter-layer Faults
using ANN Techniques

In this study, identification of an inter-layer fault in a ca-
pacitively graded bushing is carried out using Artificial Neu-
ral Network (ANN) techniques [6]. The current through the
copper strip inductance, i.¢., the leakage current, is calculated
for different types of inter-layer faults in the capacitively
graded bushing. These current patterns are used as input to
the ANN model for identification of faults. Fig. 3. illustrates
the imput and outputs of the ANN model proposed in the
study.

——» No Fauit

Leakage
Current

ANN
Model
—— Fault

Fig. 3. Input and Qutputs of the ANN Model

The leakage current pattern/waveform for each fault condi-
tion of the bushing is processed as a 1000x] matrix and fed
to a MATLAB based ANN model for training and testing
purposes. The following steps are involved in the fault identi-
fication using NN Techniques:

1. Collection of the leakage current patterns with and with-
out inter-layer faults in the bushing for transient voltage
excitation.

2. Select the neural network model and target vectors.

3. Train the network for input vectors and the corresponding
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target vectors until it can approximate a function.
4. Test the neural network model for new data and verify
output of the network in terms of success rate.

Most of the training and testing data is obtained from the
first 12 equivalent layers of the bushing model. This may be
due to fact that the interlayer faults often occur near the HT
conductor. Different equivalent layer faults, i.e., single equi-
valent-layer and double equivalent-layer faults, are considered.
Since the change in magnitude and waveshape of the leakage
current for these faults is only marginal, the authors devel-
oped perception, back propagation and cascade correlation
network models for identification of a fault in a capacitively
graded bushing [7]. The data manager screen of the ANN
model in MATLAB is shown in Fig. 4.

3.1 Perceptron Network

The main feature of the perceptron network is that a
weighted sum of input signals is compared to a threshold to
determine the network output. When the sum is greater than
or equal to the threshold, the output is 1. When the sum is
less than the threshold, the output is 0. The perceptron model
is a fast, reliable network and provides a good basis for un-
derstanding more complex problems. The architecture of the
perceptron network is shown in Fig. 5. The output of the
network is given as follows:

a= hardlim (Wp +b) )]

where ‘p’ is an input to the network, ‘W’ is the weight of
the perceptron layer, ‘b’ is the bias and ‘a’ is the output of the
network. The objective is to reduce the error ‘e’, which is the
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difference between the network response ‘a’ and the target
vector ‘t’. The perceptron learning rule ‘learnp’ calculates
desired changes to the perceptron’s weights and biases, for
given input vector ‘p’ and the associated error ‘e’. The target
vector ‘t” contain values of either 0 or 1, because perceptron
(with hardlim transfer functions) can only output these values.
Fig. 6 shows the performance curve of the perceptron network.

Epochs
Fig. 6. Performance curve of the Perceptron network

3.2 Feed-Forward Back Propagation Network

A two layer feed-forward back propagation network has
been used in the study to identify an interlayer fault in the
bushing. In this network there is a hidden layer along with the
input and output layers. The performance of the network is
found to be a function of the number of neurons in the hidden
layer. There are two neurons in the hidden layer and one neu-
ron in the output layer. The transfer function being used in
the first layer is tan-sigmoid, and in the output layer is a lin-
ear function. The output of the network is given as follows:

a; = tansig (IW1,1pi+b1) @

ay =purelin (IW;a,+b,) 3)

Where ‘p;’is the input vector. ‘IW,’ and ‘IW,’ are weights
of the layer 1 and layer 2 respectively. ‘b;” and-‘b,’ are the
bias to layer 1 and layer 2 respectively. The parameters ‘a,’
and ‘a,’ are the outputs of the first and second layers respec-
tively. ‘ay’ is the output of the network. Fig. 7 shows the ar-
chitecture of the two-layer feed-forward back propagation
network. The performance curve of the feed-forward back
propagation network is shown in Fig. 8. In the present study,
number of neurons used in the hidden layer is varied from
two to six. The number of epochs required for achieving the
required accuracy in identification of a fault in the bushing
depends on the number of neurons used in the hidden layer.

3.3 Cascade Correlation (CC) Network

Cascade-correlation (CC) is an architecture and supervised
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learning algorithm for artificial neural networks. A cascade-
correlation network begins with a minimal network, then
automatically trains and adds new hidden units one by one
creating a multi-layered structure. The CC architecture has
several advantages over existing algorithms such as it learns
quickly, determines its own size and topology, retains the
structure even if the training set changes and it does not re-
quire back propagation or error signals through the connec-
tions of the network. This network is very useful for incre-
mental learning in which new information is added to the
already trained network.

There are two stages in the execution of a CC algorithm.
The first is the formation of the cascade architecture, in
which hidden units are added only one at a time and do not
change after they have been added. The second is the leamn-
ing algorithm, which creates and installs the new hidden units.
For each new hidden unit, the algorithm tries to maximize the
magnitude of the correlation between the new unit's output
and the residual error signal of the network. Fig. 9 shows the
neural network trained with a cascade-correlation algorithm.
In this study, a two-layer CC network has been found to be
capable of identifying an interlayer fault in the bushing. In
this network there is a hidden layer along with the input and
output layers. The number of neurons required for the hidden
layer of a CC network is found to be only 2. The number of
epochs required for achieving the required accuracy is much
less than that of a back propagation network even with two
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numbers of neurons in the hidden layer. The performance
curve of the cascade correlation network is shown in Fig. 10.
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4. Results and Discussions

The healthiness of the bushing is evaluated by measuring
its leakage current during switching operations in GIS. This
current is found to be sensitive to the interlayer faults that
occur due to VFTs as they are associated with high frequency
transients. Fig. 11 shows the leakage current calculated
through a bushing with and without inter-layer fault. For this
purpose, an impulse waveform of amplitude (420 KV¥V2A3)
with a rise time of 5 ns is considered. From the results, it is
seen that there is only a marginal change in the current wave-
form. Here, a single equivalent layer fault (in the first equiva-
lent layer) is considered with a fault resistance of 0.1 Q
Furthermore, it is noticed that the attenuation of the current
magnitude with time is found to be a function of the type of
abnormality, i.e., the type of inter-layer fault.
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Leakage current patterns obtained for different types of
fault conditions (single equivalent layer and double equiva-
lent layer) in the bushing have been used for training the neu-
ral network models proposed in the study. A target matrix is
set for training. In the target matrix, O is set for the without
fault condition and 1 is set for the fault (i.e., single equivalent
layer and double equivalent layer faults) condition. Table 1
shows different models considered for the study. The models
are classified based on different percentages of training and
testing data. The time taken to train a single layer perceptron
network for one set of data is only in the order of fractions of
seconds. Fig. 12 shows the output of the perceptron network
for the leakage current patterns calculated from the equiva-
lent circuit of the bushing. From this figure, it is seen that
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Fig. 11. Leakage current of the capacitively graded bushing. (a).
without fault. (b). with inter-layer fault

Table 1. Different Models under study (N - Number of
Training data and Ny, - Number of Testing data)
A B C D E

N | Ne | Np | Np | N | Npe | N | Ne | Ni | Nge
1-6 32 12921 64 (260 97 | 227|128 | 196 | 162 | 162
7-12 25 [227| 50 {202 | 75 | 177 | 101 | 151 ] 126 | 126
13-18 9 81 | 18 | 72 [ 27 | 63 | 35 | 55 | 45 | 45
19-24 6 48 | 11 | 43 {16 | 38 | 21 | 33 | 27 | 27
25-30 4 32 7 29 | 10 | 26 | 14 | 22 | 18 | 18
31-36 4 32 7 29 | 10 | 26 | 14 | 22 | 18 | 18
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Fig. 12. Output of Perceptron network for (a). Model A (b).
Model B

there is a significant increase in the success rate with an in-

crease of training data from 10% (Model A) to 20% (Model B).

Similarly, a two-layer back propagation network is used
with a different number of neurons in hidden layer for identi-
fication of a fault in the capacitively graded bushing. For this
network also, a target matrix is set in which 0 is set for the
without fault condition and 1 for the with fault condition. The
time taken for the network to train the data depends on the
error level and the number of neurons used in the hidden
layer. Fig. 13 shows the output of the back propagation net-
work for different models under study. From this figure, fol-
lowing observations have been made:

1. The output of the network does not necessarily have to be
either 1 or 0. Thus a range has been set for identifying a
fault.

2. As the percentage of training data increases, the output
level approaches to target level.

The success rate of the above networks has been evaluated
for different models and compared in Table 2. From the re-
sults, the following observations have been made:

1. The perceptron network and CC network are simple and
effective for lower percentage of training data.

2. The time taken for CC network is in the same order of
that of the back propagation network.
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work for (a). Model A (b). Model B



M. Mohana Rao, P.Dharani and T. Prasad Rao 33

3. The number of neurons required for hidden layer of CC
network is much less than that of the back propagation
network for a particular success rate.

4. CC network may be more effective to other networks, for
new current data obtained from substation bushing during
on-line monitoring.

In order to understand the effect of characteristics of hid-
den layer in feed-forward back propagation networks on suc-
cess rate, different numbers of neurons have been employed
in the hidden layer for the models under study (refer Table 3).
From the results, it is clear that the success rate of the net-
work increases with an increase of the number of neurons in
the hidden layer. It is important to note that the time taken for
the training of the back propagation network is very high
compared to the perceptron network.

As the number of neurons in the hidden layer increases, the
time taken for one epoch also increases. Even though the
number of epochs decreases with an increase in the number
of neurons, over all training time increases significantly. Thus,
the time taken for the training of leakage current patterns
depends on the accuracy at which the prediction of the inter-
layer fault is required for the reliable operation of the equip-
ment. It may be noted that identification of fault alone may
not be sufficient as part of the power equipment monitoring
package. It is also important to know the type of abnormality
before a bushing is said to require maintenance. In order to
validate the capability of a perceptron network for the present
application, different types of abnormalities (single-
equivalent layer and double-equivalent layer) have been seg-
regated, i.e., identified with the type of fault. A two layer
feed-forward back propagation network is used with 4 num-

Table 2. Success rate of the Perceptron and Feed-forward
Back propagation Networks

Mot | Nemort | oo o Network
%) ) )
A 98.23 89.62 98.69
B 99.61 96.19 99.72
C 99.85 98.36 100
D 100 99.31 100
E 100 99.38 100

Table 3. Success rate of the back propagation network for
different number of neurons in the hidden layer

Feed-forward Back propagation network (%)
Modetl
2 Neurons 4 Neurons 6 Neurons
A 89.62 97.22 98.12
B 96.19 98.62 98.90
C 98.36 99.05 99.45
D 99.31 99.39 99.63
E 99.38 99.56 99.85

bers of neurons in hidden layer. Similarly, a cascade correla-
tion network is used with two numbers of neurons in the hid-
den layer. The success rate of the above networks has been
evaluated for different models and compared in Table 4.
There is a significant increase in success rate with an increase
of training data from 10% (Model A) to 50% (Model E).
From the results, it is evident that, even though a perceptron
network is simple, it is ineffective for the identification of
types of abnormality. More clearly, the perceptron network is
not sufficient enough for the identification of types of abnor-
mality even for 50% of the training data (Model E). As the
percentage of training data increases, the success rate of net-
works for this identification also improves significantly. Fur-
thermore, the CC network is found to be superior compared
to other networks, even for segregation of abnormalities, i.e.,
identification of fault with type.

Table 4. Success rate of the Networks for identification of

type of abnormality
Model Perceptron network | Back Propagation | Cascade Correlation
ode %) Network (%) Network (%)
A 36.52 62.71 72.83
B 438.62 72.68 78.61
C 56.83 79.16 83.69
D 63.48 87.54 87.59
E 68.23 91.32 93.56

5. Conclusions

An optimal equivalent layers modeling circuit for a 420
kV SF¢ gas-to-air capacitively graded bushing has been used
to simulate its behavior for very fast transients generated
during switching operations in GIS. Since the change in leak-
age current with an interlayer fault in a bushing is only mar-
ginal, ANN techniques have been used for their identification.
A single layer perceptron, two-layer feed-forward back
propagation and cascade-correlated (CC) neural network
models have been proposed in this study. For the identifica-
tion of interlayer fault, a perception network is found to be
superior to the feed-forward back propagation network.
However, for identification of type of abnormality, a percep-
tron network is found to be ineffective even with an increased
percentage of training data. For a particular success rate of
the network, the number of neurons required for the hidden
layer of the CC network is much less than that required for
the back propagation network. The developed networks have
been successfully tested for various leakage current patterns
obtained from the bushing model.
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