• Title/Summary/Keyword: Switching loss

Search Result 1,107, Processing Time 0.029 seconds

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

The Converter of High Efficiency 48V 400A for Electronic Exchange (전자교환기용 고효율 48V 400A급 전력변환장치의 시작)

  • 박성우;서기영;전중함;김부국;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.60-63
    • /
    • 1998
  • The widely used power supply (Switched Mode Power Supply : SMPS) as a source in order to stabilize direct current for electronics or communication systems has merits, when it is compared to the existing source for stability, such as high efficiency, small size, light weight by means of switching process of the semiconductor device which controls the flow of power. However, due to existence of inductors and capacitors used for charging energy, the source part in electronic or communication systems hasn't reached the speed, that is supposed to get, for achieving smaller size and lighter weight. In order to get smallness in size, it is necessary to increase switching frequency. And that makes devices for measuring energy smaller. Nevertheless, the rise switching frequency brings increases in switching loss, inductor loss, and power loss. Also, the occurrence of surge and noise caused by high frequency switching is getting higher. The resonant converter has been considered as one of methods that give solutions for the problems of SMPS and that method have been paid attention as a source technology in electronics and communication.

  • PDF

A Study of the Digital Phase-shift Resonant Converter to Reduce the conduction Loss and Stress of the Switching Device (스위칭 소자의 전도손실과 스트레스를 저감하기 위한 디지털 위상천이 공진형 컨버터에 관한 연구)

  • Shin, Dong-Ryul;Hwang, Young-Min;Kim, Dong-wan;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • Due to the development of information communication field, the interest of the SMPS(Switched Mode Power Supply) is increased. The size and weight of SMPS are decided by inductor, capacitor and transformer. Thus, the low loss converter which is operated in high speed switching is required. The resonant FB DC-DC converter is able to operate in high speed switching and apply to high power field because the switching loss is low. In this thesis, it is proposed to control strategy for constant output power of resonant FB DC-DC converter in variable input voltage. The proposed control system is a digital I-PD type control and apply to phase-shift resonant type controller. The output voltage tracks reference without steady state error in variable input voltage. The validity of proposed control strategy is verified from results of simulation and experiment.

An Efficiency Improvement Method for Single-phase Boost Converter by Reducing Switching Loss (스위칭 손실 감소에 의한 단상 부스트 컨버터의 효율개선)

  • Kim Jong-Su;Oh Sae-Gin;Park Keun-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.96-103
    • /
    • 2006
  • This paper proposes a new technique for improving the efficiency of single phase high frequency switch mode boost converter. This converter includes an additional boost converter that follows the main hish frequency switching device. The additional converter, which is controlled at lower frequencies, bypasses almost all the current in the main switch and the high frequency switching loss is greatly reduced. Both switching devices are controlled by a simple method; each controller consists of a one-shot multivibrator, a comparator and an AND gate, and the maximum switching frequency can be limited without any clock generator. The converter works cooperatively in high efficiency and acts as though it were a conventional high frequency switch mode converter with one switching device. This paper describes the proposed converter configuration, design, and discusses the steady state performance concerning the switching loss reduction and efficiency improvement. and the proposed method is verified by computer simulation.

Efficiency Improvement of New Soft Switching Type Buck-Boost Chopper (새로운 소프트 스위칭형 벅-부스터 컨버터의 효율개선)

  • 고강훈;곽동걸;서기영;권순걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.44-48
    • /
    • 1998
  • In the buck-boost DC-DC converter which is used at a certain situation such as in factories where loads often change a lot, the switches in the device make big energy loss in operating at Buck-Boost Mode due to hard switching and are affected by lots of stresses which decrease the efficiency rate of the converter. In order to improve this problem, to decrease the loss of snubber and switching, it has been investigated that zero voltage switching mode and zero current switching mode which make the operation of switches with soft switching. For the more sophisticated and advanced device, this paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operate when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

An Improved Analytical Model for Predicting the Switching Performance of SiC MOSFETs

  • Liang, Mei;Zheng, Trillion Q.;Li, Yan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.374-387
    • /
    • 2016
  • This paper derives an improved analytical model to estimate switching loss and analyze the effects of parasitic elements on the switching performance of SiC MOSFETs. The proposed analytical model considers the parasitic inductances, the nonlinearity of the junction capacitances and the nonlinearity of the trans-conductance. The turn-on process and the turn-off process are illustrated in detail, and equivalent circuits are derived and solved for each switching transition. The proposed analytical model is more accurate and matches better with experimental results than other analytical models. Note that switching losses calculated based on experiments are imprecise, because the energy of the junction capacitances is not properly disposed. Finally, the proposed analytical model is utilized to account for the effects of parasitic elements on the switching performance of a SiC MOSFET, and the circuit design rules for high frequency circuits are given.

Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS

  • Kim, Jae-Hyung;Jung, Yong-Chae;Lee, Su-Won;Lee, Tae-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • In this paper, an interleaved soft switching boost converter for a Photovoltaic Power Conditioning System (PV-PCS) with high efficiency is proposed. In order to raise the efficiency of the proposed converter, a 2-phase interleaved boost converter integrated with soft switching cells is used. All of the switching devices in the proposed converter achieve zero current switching (ZCS) or zero voltage switching (ZVS). Thus, the proposed circuit has a high efficiency characteristic due to low switching losses. To analyze the power losses of the proposed converter, two experimental sets have been built. One consists of normal devices (MOSFETs, Fast Recovery (FR) diodes) and the other consists of advanced power devices (CoolMOSs, SiC-Schottky Barrier Diodes (SBDs)). To verify the validity of the proposed topology, theoretical analysis and experimental results are presented.

AN INVESTIGATION OF THE KOREAN GENERAL INSURANCE INDUSTRY: EVIDENCE OF STRUCTURAL CHANGES AND IMPACT OF MACRO-ECONOMIC FACTORS ON LOSS RATIOS

  • Thompson, Ephraim Kwashie;Kim, So-Yeun
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.617-641
    • /
    • 2022
  • In this study, we first present a brief overview of the Korean general insurance market. We then explore the characteristics of the loss ratios of the Korean general insurance industry and apply Markov regime-switching methodology to model the loss ratios of these insurance companies by line of business based on changes in economic regimes. This study applies a number of confirmatory tests such as Zivot-Andrews test (2002), the Chow (1960) test and the Bai and Perron (1998) to confirm the presence of structural breaks in the time series of the loss ratios by line of business. Then, we employ Markov regime-switching methodology to model these loss ratios. We find empirical evidence that the loss ratios reported by insurance companies in Korea is characterized by two distinct regimes; a regime with high volatility and a regime with low volatility, except for vehicle insurance. Our analyses suggest that macro-economic conditions have significant explanatory effect on loss ratios but the direction of effect differs based on the line of business and the regime. Unlike previous studies that have applied linear regressions or divided the samples into different periods and then apply linear regressions to model loss ratios, we argue for the application of Markov regime-switching methodology, which are able to automatically distinguish the different regimes that may be associated with the movements of loss ratios based on differing economic conditions and regulatory upheavals. This study provides a more in depth understanding of loss ratios in the general insurance industry and will be of value to insurance practitioners in modelling the loss ratios associated with their businesses to aid in their decision making. The results may also provide a basis for further studies in other markets apart from Korea as well as for shaping policy decisions related to loss ratios.

Comparative Study of Minimum Ripple Switching Loss PWM Hybrid Sequences for Two-level VSI Drives

  • Vivek, G.;Biswas, Jayanta;Nair, Meenu D.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1729-1750
    • /
    • 2018
  • Voltage source inverters (VSIs) are widely used to drive induction motors in industry applications. The quality of output waveforms depends on the switching sequences used in pulse width modulation (PWM). In this work, all existing optimal space vector pulse width modulation (SVPWM) switching strategies are studied. The performance of existing SVPWM switching strategies is optimized to realize a tradeoff between quality of output waveforms and switching losses. This study generalizes the existing optimal switching sequences for total harmonic distortions (THDs) and switching losses for different modulation indexes and reference angles with a parameter called quality factor. This factor provides a common platform in which the THDs and switching losses of different SVPWM techniques can be compared. The optimal spatial distribution of each sequence is derived on the basis of the quality factor to minimize harmonic current distortions and switching losses in a sector; the result is the minimum ripple loss SVPWM (MRSLPWM). By employing the sequences from optimized switching maps, the proposed method can simultaneously reduce THDs and switching losses. Two hybrid SVPWM techniques are proposed to reduce line current distortions and switching losses in motor drives. The proposed hybrid SVPWM strategies are MRSLPWM 30 and MRSLPWM 90. With a low-cost PIC microcontroller (PIC18F452), the proposed hybrid SVPWM techniques and the quality of output waveforms are experimentally validated on a 2 kVA VSI based on a three-phase two-level insulated gate bipolar transistor.

SOFT SWITCHING AND LOSS ANALYSIS OF A HALF-BRIDGE DC-DC CONVERTER WITH IGBT-MOSFET PARALLEL SWITCHES

  • Hong, Soon-Chan;Seo, Young-Min;Jang, Dong-Ryul;Yoon, Duck-Yong;Hwang, Yong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.713-718
    • /
    • 1998
  • Due to high power ratings and low conduction loss, the IGBT has become more attractive in high power applications. However, its slower characteristics than those of MOSFET cause severe switching losses and switching frequency limitation. This paper proposes the IGBT's soft switching concept with the help of MOSFET, where each of the IGBT and MOSFET plays its role during on-periods and switching instants. Also, the switching losses are analyzed by using the linearized modeling and the modeling and the operations of a converter are investigated to confirm the soft switching of IGBT's.

  • PDF