• Title/Summary/Keyword: Switching circuit

Search Result 1,980, Processing Time 0.033 seconds

2.5MHz Zero-Voltage-Switching Resonant Inverter for Electrodeless Fluorescent Lamp (무전극 램프 점등용 2.5MHz급 ZVS 인버터 개발에 관한 연구)

  • 박동현;김희준;조기연;계문호
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.261-265
    • /
    • 1997
  • Driving the electrodeless fluorescent lamp, the high ac voltage with high frequency is required. The linear power amplifier has been widely used as a driving circuit of electrodeless fluorescent lamp. However, the low efficiency of the power amplifier causes th driving circuit to be replaced by a PWM switching inverter. In order to use a PWM switching inverter as the driving circuit of an electrodeless fluorescent lamp, the high switching frequency is required. But due to the switching loss at switches of the inverter, the limitation of high switching frequency appears in the inverter. One solution to this limitation is to reduce the switching loss by using the zero voltage switching technique. In this paper, zero voltage switching resonant inverter for driving an electrodeless fluorescent lamp is discussed. The results of analysis about the inverter are presented and the equations for design are established. And the validity of the analyzed results are verified through the experiment.

  • PDF

A Study on High Efficiency Boost DC-DC Converter of Discontinuous Current Mode Control (전류불연속 제어의 고효율 부스트 DC-DC 컨버터에 관한 연구)

  • Kwak Dong-Kurl;Kim Choon-Sam
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.431-436
    • /
    • 2005
  • This paper studies a novel boost DC-DC converter operated high efficiency for discontinuous current mode (DCM) control. The converter worked in DCM eliminates the complicated circuit control requirement, reduces a number of components, and reduces the used reactive components size. In the general DCM converter, the switching devices are turned-on the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve the zero voltage switching (ZVS) at the switching turn-off, the proposed converter is constructed by using a new loss-less snubber circuit. Soft-switched operation of the proposed boost converter is verified by digital simulation and experimental results. A new boost converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of boost DC-DC converter is high.

A Novel Energy Recovery Circuit for AC PDPs with Reduced Sustain Voltage (새로운 유지구동전압 저감형 AC PDP용 에너지 회수회로)

  • Lim, Seung-Bum;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.494-501
    • /
    • 2006
  • In this paper, a novel energy recovery circuit for AC PDPs(Plasma Display Panels) with reduced sustain voltage is proposed to improve the performance of conventional circuits such as TERES(TEchnology of REciprocal Sustainer). In the TERES circuit, the sustain voltage is the half of general sustaining driver for AC PDPs, however, there is no energy recovery circuit. In the proposed circuit, the efficiency is heightened by installing in energy recovery circuit and the loss of switching device is reduced by performing the zero voltage switching or zero current switching. Although the energy recovery circuit is added, the number of active switching elements of the proposed circuit is the same as that of the TERES circuit. The operations of the proposed circuit are analyzed for each mode and its validity is verified by the simulations and experimentation.

A NEW High Efficiency Soft-Switching Three-Phase PWM Rectifier (새로운 고효율 소프트 스위칭 3상 PWM 정류기)

  • Mun Sang-Pil;Suh Ki-Young;Lee Hyun-Woo;Kwon Soon-Kurl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.49-58
    • /
    • 2005
  • A new soft switching three-phase PWM rectifier with simple circuit configuration and high efficiency has been developed. The proposed circuit is a kind of the auxiliary resonant commutated Pole(ARCP)converter The conventional ARCP converter requires three-auxiliary reactors and six-auxiliary switches for the soft switching auxiliary circuit and for these switching elements, a gate drive circuit and a control circuit are required, resulting in high part as a disadvantage. In the main circuit proposed in this paper, the auxiliary soft switching circuit is composed of two-auxiliary reactors, two-auxiliary switches and several diodes. In addition, common use of the PWM control circuit for two-switches will make the control circuit of the auxiliary switches simple. By means of function of the soft switching auxiliary circuit, the main switching element performs zero voltage switching operation and the auxiliary switches perform the zero current switching. In this paper, the circuit configuration and the operational analysis of the proposed circuit are described at first and then, experimental results will be reported. By using a prototype with 5[kW] capacity, the conversion efficiency of maximum $98.8[\%]$ and the power factor of $99[\%]$ or higher were obtained.

A Study on Hight Efficiency Inverter Ballast using Microprocessor (마이크로프로세서를 사용한 고효율 인버터 안정기에 관한 연구)

  • ;鄭載倫
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.220-220
    • /
    • 1999
  • This paper describes the high efficiency inverter ballast circuit using very cheap microprocessor, which has been developed by the author. A variety of soft-switching techniques have been proposed to reduce the switching losses and EMI problems that occur with higher switching frequencies in switched inverter ballast. The inverter ballast circuit, which employs a temperature sensing circuits has been also proposed to improve starting performance of the fluorescent lamps. That is, the inverter ballast circuit, which employs a soft-starting circuit and soft-switching techniques to implement the power factor correction and to mitigate of power-loss and increase a life time of the fluorescent lamps, has become an attractive performance for ballasting the fluorescent lamps. In this paper, the operation and the control of the inverter ballast are described in detail and experimental results are presented. As the experimental results, when environment temperature is at -40℃, the inverter ballast circuit has low THD(4.8%) of the input current and large power factor(98%) of the lamp current. The proposed improved ballast circuit appears to be a good performance for ballasting fluorescent lamps.

Techniques to Diagnose Short-Circuit Faults in the Switching Mode Power Supply for Display (디스플레이용 스위칭모드 전원장치의 단락 고장분석 검출기법)

  • Lee, Jae-Won;Chun, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1186-1192
    • /
    • 2016
  • This paper proposes techniques to diagnose short-circuit faults of both the diodes and power FET in switching mode power supply (SMPS) by using a simple analog tester. The diodes in full-bridge rectifier, power FET, switching transformer, and some sensors are modelled with resistor. The total resistance value measured at the input terminal of a SMPS is analyzed when the short-circuit faults of diodes in a full bridge rectifier or power FET are occurred. The short-circuit faults of one or two diodes in a full bridge rectifier, power FET, and both the diodes in a full bridge rectifier and power FET can be detected by a range of total resistance, which is measured by the analog tester. Through experiments, the theoretical analysis for total resistance under short-circuit faults can be verified.

Switching Function Implementation based on Graph (그래프에 기초한 스위칭함수 구현)

  • Park, Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1965-1970
    • /
    • 2011
  • This paper proposes the method of switching function implementation using switching function extraction based on graph over finite fields. After we deduce the matrix equation from path number of directional graph, we propose the switching function circuit algorithm, also we propose the code assignment algorithm for nodes which is satisfied the directional graph characteristics with designed circuits. We can implement more optimal switching function compare with former algorithm, also we can design the switching function circuit which have any natural number path through the proposed switching function circuit implementation algorithms. Also the proposed switching function implementation using graph theory over finite fields have decrement number of input-output, circuit construction simplification, increment arithmetic speed and decrement cost etc.

Design of High Speed Switching Circuit for Pulsed Power Amplifier (Pulsed Power Amplifier를 위한 고속 스위칭 회로 설계)

  • Yi, Hui-Min;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.174-180
    • /
    • 2008
  • The pulsed amplifier which switches the main supply voltage of RF amplifier according to input pulse signal has good efficiency and low noise level between pulses. And it has simple structure because it doesn't need a pulse modulator at input port. The pulsed amplifier using the conventional switching circuit has slow fall time compared to rise time. We proposed the novel switching circuit for improving the fall time of pulsed amplifier The proposed switching circuit is implemented by replacing FET of conventional circuit with BJT. As a result of appling this circuit to RF pulsed amplifier, the rise and fall time are 5.7 ns and 21.9 ns at 27 dBm output power, respectively.

EMI and Switching Loss Reductions of a Full -Bridge PWM Converter for DC Motor Drive

  • Naoya, Yokoyama;Ishimatzu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.46.4-46
    • /
    • 2001
  • This paper presents a Five-Switch Converter (FSC) circuit that can operate like a full-bridge PWM converter for driving the DC motor in bidirectional. One of the main advantages of this circuit is to reduce the on-off switching number of power MOSFET. In stead of turning on-off simultaneously two of the four power MOSFET´s in a switching period, this circuit operates only one power MOSFET, while continuously leaving another two on and the other two off in the switching period. Consequently ...

  • PDF

A Study on Soft Switching PWM Boost Converter using ZVT Technique (ZVT 기술을 이용한 soft switching DC-DC Boost 컨버터에 관한 연구)

  • 김춘삼
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.141-144
    • /
    • 2000
  • Recently DC-DC converters significantly increase the total losses as rising switching frequency. Traditional soft switching technique for reducing switching losses even increase voltage/current stress of switch. In this paper Resonant circuit for soft switching is connected in parallel with power stage and only operates just before turn-on of the main operates just before turn-on of the main switch, Therefore This doesn't affect the total circuit operation. ZNT-PWM converter designed with 170-260V input 4--V 5A output and 100kHz switching frequency is tested respectively with 500W. 1kW, 1.5kW, and 2kW loads.

  • PDF