• Title/Summary/Keyword: Switching cell

Search Result 554, Processing Time 0.031 seconds

An Employed Zero Voltage/Zero Current Switching Commutation Cell for All Active Switches in a PWM DC/DC Converter

  • Lee, Dong-Yun;Hyun, Dong-Seok
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.183-190
    • /
    • 2002
  • This paper presents an improved Zero Voltage/Zero Current Switching (ZVZCS) commutation cell with minimum additional components, which provides soft switching at both turn-on and turn-off of main and auxiliary switches as well as diodes in a PWM DC/DC converter. The proposed soft-switching technique is suitable for not only minority, but also majority carrier semiconductor devices. The auxiliary switch of the proposed ZVZCS commutation cell is in parallel with the main switch, and therefore, the main switch and the diode are free of currentstress. The operation principles of the proposed ZVZCS commutation cell are theoretically analyzed using the PWM boost converter topology as an example. The validity of the PWM boost converter topology with the proposed ZVZCS commutation cell is verified through theoretical analysis, simulation and experimental results.

Performance Evaluation of a Cell Reassembly Mechanism with Individual Buffering in an ATM Switching System

  • Park, Gwang-Man;Kang, Sung-Yeol;Han, Chi-Moon
    • ETRI Journal
    • /
    • v.17 no.1
    • /
    • pp.23-36
    • /
    • 1995
  • We present a performance evaluation model of cell reassembly mechanism in an ATM switching system. An ATM switching system may be designed so that communications between processors of its control part can be performed via its switching network rather than a separate inter-processor communications network. In such a system, there should be interface to convert inter-processor communication traffic from message format to cell format and vice versa, that is, mechanisms to perform the segmentation and reassembly sublayer. In this paper, we employ a continuous-time Markov chain for the performance evaluation model of cell reassembly mechanism with individual buffering, judicially defining the states of the mechanism. Performance measures such as message loss probability and average reassembly delay are obtained in closed forms. Some numerical illustrations are given for the performance analysis and dimensioning of the cell reassembly mechanism.

  • PDF

Enhanced Switching Pattern to Improve Energy Transfer Efficiency of Active Cell Balancing Circuits Using Multi-winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로의 에너지 전달 효율을 높이기 위한 향상된 스위칭 패턴)

  • Lee, Sang-Jung;Kim, Myoungho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • This study proposes an enhanced switching pattern that can improve energy transfer efficiency in an active cell-balancing circuit using a multiwinding transformer. This balancing circuit performs cell balancing by transferring energy stored in a specific cell with high energy to another cell containing low energy through a multiwinding transformer. The circuit operates in flyback and buck-boost modes in accordance with the energy transfer path. In the conventional flyback mode, the leakage inductance of the transformer and the stray inductance component of winding can transfer energy to an undesired path during the balancing operation. This case results in cell imbalance during the cell-balancing process, which reduces the energy transfer efficiency. An enhanced switching pattern that can effectively perform cell balancing by minimizing the amount of energy transferred to the nontarget cells due to the leakage inductance components in the flyback mode is proposed. Energy transfer efficiency and balancing speed can be significantly improved using the proposed switching pattern compared with that using the conventional switching pattern. The performance improvements are verified by experiments using a 1 W prototype cell-balancing circuit.

Switching current density for spin transfer torque magnetic random access memory with Dzaloshinskii-Moriya Interaction

  • Song, Kyungmi;Lee, Kyung-Jin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2015.05a
    • /
    • pp.78-79
    • /
    • 2015
  • We investigate the switching current for various cell diameters and DM interaction. We find that the current density for switching can depend strongly on the cell size when the switching is governed by the domain wall motion. Moreover the switching current density is also strongly influenced by DM interaction. In the presentation, we will discuss the effect of domain wall formation and more various DMI constant on the switching current desity in detail.

  • PDF

An Algorithm for Even Distribution of Loss, Switching Frequency, Power of Model Predictive Control Based Cascaded H-bridge Multilevel Converter (모델 예측 제어 기반 Cascaded H-bridge 컨버터의 균일한 손실, 스위칭 주파수, 전력 분배를 위한 알고리즘)

  • Kim, I-Gim;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.448-455
    • /
    • 2015
  • A model predictive control (MPC) method without individual PWM has been recently researched to simplify and improve the control flexibility of a multilevel inverter. However, the input power of each H-bridge cell and the switching frequency of switching devices are unbalanced because of the use of a restricted switching state in the MPC method. This paper proposes a control method for balancing the switching patterns and cell power supplied from each isolated dc source of a cascaded H-bridge inverter. The supplied dc power from isolated dc sources of each H-bridge cells is balanced with the proposed cell balancing method. In addition, the switching frequency of each switching device of the CHB inverter becomes equal. A simulation and experimental results are presented with nine-level and five-level three-phase CHB inverter to validate the proposed balancing method.

Optimal Design of Soft-Switching Cell for High Efficiency and High Power Density for HDC of FCEVs (FCEV용 HDC 고효율 운전을 위한 소프트 스위칭 셀 최적 설계 방안)

  • Kim, So-Young;Noh, Tae-Won;Lee, Jaehyung;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.217-224
    • /
    • 2018
  • In this study, the optimal design methods of soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell electric vehicles (FCEVs) is proposed for high efficiency and high power density. The appropriate soft-switching cell for FCEVs is chosen by analyzing the losses of HDC which adopts soft-switching cell. The proposed optimal design methods for the soft-switching cell are divided into two purposes which are improvement of efficiency and power density. Two kinds of design methods enable to improve fuel efficiency and cost, respectively. The proposed design methods are validated with the experimental results based on the specification and hardware used in actual FCEVs.

Retardation Free In-plane Switching Liquid Crystal Display with High Speed and Wide-view Angle

  • Kang, Wan-Seok;Moon, Je-Wook;Lee, Gi-Dong;Lee, Seung-Hee;Lee, Joun-Ho;Kim, Byeong-Koo;Choi, Hyun-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • In this paper, we propose an in-plane switching (IPS) mode for liquid crystal displays (LCDs) that, in principle, is free of retardation of the LC cell. Basically, the optical configuration of the LC cell consists of an A-plate and an LC layer for switching between the dark and bright states. We could achieve a fast response time compared with the conventional in-plane LC cell because the free retardation condition of the proposed LC cell enables us to reduce the cell gap even by quarter-wave retardation without any change of the optimized LC material in the transmissive mode. Experiments for verification of the proposed in-plane switching LC cells have shown a significant reduction of the rising time and falling time simultaneously due to the small cell gap. Furthermore, we also proposed an optical configuration for wide viewing property of the retardation free IPS LCD by applying the optical films. We proved the wide-view property of the retardation free IPS LCD by comparing its optical luminance with the calculated optical property of the conventional IPS LCD.

Multi-Phase Interleaved ZVT Boost Converter With a Single Soft-Switching Cell (단일 소프트 스위칭 셀을 가진 다상 Interleaved ZVT Boost 컨버터)

  • Lee, Joo-Seung;Hwang, Yun-Seong;Kang, Sung-Hyun;Kwon, Man-Jae;Jang, Eunsu;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.247-255
    • /
    • 2022
  • This paper proposes a multiphase interleaved zero-voltage-transition boost converter with a single soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell systems. The proposed single soft-switching cell structure can reduce the system volume by minimizing the passive and active elements added even in the multiphase-interleaved structure. To analyze the feasibility of the proposed structure, this paper mathematically analyzes the operation modes of the converter with the proposed single soft-switching cell structure and presents guidelines for design and considerations. In addition, the feasibility of the 210[kW] HDC was confirmed through PSIM simulation, and the system volume reduction of up to 10.48% was confirmed as a result of the 5[kW] HDC test-bed experiment considering the fuel cell system. Through this, the validity of the proposed structure was verified.

A High Efficiency Zero Voltage/Zero Current Transition Converter for Series Connected Battery Cell Equalization (영전압/영전류 스위칭을 이용한 고효율의 직렬 접속 배터리 전압 밸런싱 방법)

  • Kim, Tae-hoon;Park, Nam-Ju;Hyun, Dong-seok;Kim, Rae-young
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.26-27
    • /
    • 2011
  • This paper focuses on the zero-voltage/zero current transition voltage equalization circuit for the series connected battery cell. By adding auxiliary resonant cells at the main switching devices such as MOSFET or IGBT, zero current switching is achieved and turned off loss of switching elements is eliminated and by the voltage/second balancing of the inductor, zero voltage switching can be applied to switching element. Transformer coupling between battery cells and ZVZCT (Zero Voltage Zero Current Transition) switching method allow the fast balancing speed and high frequency operation, which reduces the size and weight of the circuit. The validity of the battery equalization is further verified using simulation involving four lithium-ion battery cell models.

  • PDF

An Isolated Soft-Switching Bidirectional Buck-Boost Inverter for Fuel Cell Applications

  • Zhang, Lianghua;Yang, Xu;Chen, Wenjie;Yao, Xiaofeng
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.235-244
    • /
    • 2010
  • This paper presents a new isolated soft-switching bidirectional buck-boost inverter for fuel cell applications. The buck-boost inverter combines an isolated DC-DC converter with a conventional inverter to implement buck-boost DC-DC and DC-AC conversion. The main switches achieve zero voltage switching and zero current switching by using a novel synchronous switching SVPWM and the volume of the transformer in the forward and fly-back mode is also minimized. This inverter is suitable for wide input voltage applications due to its high efficiency under all conditions. An active clamping circuit reduces the switch's spike voltage and regenerates the energy stored in the leakage inductance of the transformer; therefore, the overall efficiency is improved. This paper presents the operating principle, a theoretical analysis and design guidelines. Simulation and experimental results have validated the characteristics of the buck-boost inverter.