• 제목/요약/키워드: Switching Technique

검색결과 904건 처리시간 0.025초

A Double-Hybrid Spread-Spectrum Technique for EMI Mitigation in DC-DC Switching Regulators

  • Dousoky, Gamal M.;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.342-350
    • /
    • 2010
  • Randomizing the switching frequency (RSF) to reduce the electromagnetic interference (EMI) of switching power converters is a well-known technique that has been previously discussed. The randomized pulse position (RPP) technique, in which the switching frequency is kept fixed while the pulse position (the delay from the starting of the switching cycle to the turn-on instant within the cycle) is randomized, has been previously addressed in the literature for the same purpose. This paper presents a double-hybrid technique (DHB) for EMI reduction in dc-dc switching regulators. The proposed technique employed both the RSF and the RPP techniques. To effectively spread the conducted-noise frequency spectrum and at the same time attain a satisfactory output voltage quality, two parameters (switching frequency and pulse position) were randomized, and a third parameter (the duty ratio) was controlled by a digital compensator. Implementation was achieved using field programmable gate array (FPGA) technology, which is increasingly being adopted in industrial electronic applications. To evaluate the contribution of the proposed DHB technique, investigations were carried out for each basic PWM, RPP, RSF, and DHB technique. Then a comparison was made of the performances achieved. The experimentally investigated features include the effect of each technique on the common-mode, differential-mode, and total conducted-noise characteristics, and their influence on the converter’s output ripple voltage.

철도차량내의 전력변환장치 출력전원 분석을 통한 스위칭 기법 추정 (The Estimation on Switching Technique via Output Power Source Analysis of Power Conversion System in an Electric Railway Vehicle)

  • 김재문;이을재;윤차중;김양수
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.185-190
    • /
    • 2010
  • This paper presents the estimation on switching technique via output power source analysis of power conversion unit in electric railway vehicle. The focus of this study suggested an alternative on critical problems by using head electric power(HEP). To achieve this, we have measured output power of HEP, and measurement devices set up at output of transformer connected HEP to analysis quality on output power source of head electric power(HEP) unit in electric railway vehicle. Using results of measurement of it, parameters are assumed for simulation to confirm estimation on switching technique. It is confirmed that switching technique is Selected Harmonic Elimination PWM(SHEPWM) and inverter switching frequency is less than 500[Hz]. Throughout experiment and simulation, it is estimated that switching technique used HEP is advanced SHEPWM and switching frequency is about 300[Hz]. Also leakage inductance in transformer is about $180[{\mu}H]$ less than $365[{\mu}H]$ known.

Self-Oscillating Switching Technique for Current Source Parallel Resonant Induction Heating Systems

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.851-858
    • /
    • 2012
  • This paper presents resonant inverter tuning for current source parallel resonant induction heating systems based on a new self oscillating switching technique. The phase error is suppressed in a wide range of operating frequencies in comparison with Phase Locked Loop (PLL) techniques. The proposed switching method has the capability of tuning under fast changes in the resonant frequency. According to this switching method, a multi-frequency induction heating (IH) system is proposed by using a single inverter. In comparison with multi-level inverter based IH systems, the advantages of this technique are its simple structure, better transients and wide range of operating frequencies. A laboratory prototype was built with an operating frequency of 35 kHz to 55 kHz and 300 W of output power. The performance of the IH system shows the validity of the new switching technique.

3상 승압형 AC/DC 컨버터의 고역율과 스위칭 손실 저감을 위한 공진 PWM 스위칭 기법에 관한 연구 (Study on Resonant PWM Switching Technique for $3{\phi}$ Boost AC/DC Converter with High Power Factor and Less Switching Loss)

  • 이은규;노영남;김병진;전희종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.541-543
    • /
    • 1997
  • In this paper, a proposed resonant PWM switching technique makes the boost AC/DC converter to high input power factor and less switching loss. Also, the switching control scheme is used which minimize harmonic components employing novel PWM technique. In addition, an employment of resonant circuit for switching makes zero current switching(ZCS) and zero voltage switching(ZVS) for control switches without switching losses. The result shows that high power factor is still for varying load and switching loss is very low.

  • PDF

보조스위치를 이용한 매트릭스 컨버터(Matrix Converter)의 소프트스위칭 기법 (A Soft-Switching Technique of Matrix Converters using Auxiliary Switch)

  • 엄태욱;김윤호;김승모
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.519-524
    • /
    • 2002
  • This paper presents a soft-switching technique of single-stage power conversion Matrix Converter of AC-AC converters. Conventional hard-switching method is limited to operate at low switching frequency due to increased switching loss. In this paper, by additional auxiliary switch circuits, it is shown that the main switch of the matrix converter operate as a zero-voltage switches, and the auxiliary switch operate as a zero current switch. Finally, the soft-switching technique with auxiliary switches is compared with conventional hard-switching technique, and Is analyzed by simulation.

  • PDF

ZVT 기술을 이용한 soft switching DC-DC Boost 컨버터에 관한 연구 (A Study on Soft Switching PWM Boost Converter using ZVT Technique)

  • 김춘삼
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2000
  • Recently DC-DC converters significantly increase the total losses as rising switching frequency. Traditional soft switching technique for reducing switching losses even increase voltage/current stress of switch. In this paper Resonant circuit for soft switching is connected in parallel with power stage and only operates just before turn-on of the main operates just before turn-on of the main switch, Therefore This doesn't affect the total circuit operation. ZNT-PWM converter designed with 170-260V input 4--V 5A output and 100kHz switching frequency is tested respectively with 500W. 1kW, 1.5kW, and 2kW loads.

  • PDF

A Switching Technique for Common Mode Voltage Reduction of 2-Level Inverter

  • Yun Hwan-Kyun;Kim Lee-Hun;Kim Jun-Ho;Won Chung-Yuen;Choi Gi-Su;Bae Joung-Hwan
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.438-442
    • /
    • 2001
  • Much attention has given to EMI effects created by variable speed ac drive system. This paper focuses on the switching technique to mitigate common mode voltage. Zero switching states of inverter control invoke large common mode voltage. Using inversed carrier wave, zero switching states are removed. In addition, proposed technique is easy to apply to existing 2-level inverter design. And common mode mitigation technique for sinusoidal PWM is also presented. Proposed switching technique is implemented with a 2.2kw 1735rpm induction motor.

  • PDF

Inductive Switching Noise Suppression Technique for Mixed-Signal ICs Using Standard CMOS Digital Technology

  • Im, Hyungjin;Kim, Ki Hyuk
    • Journal of information and communication convergence engineering
    • /
    • 제14권4호
    • /
    • pp.268-271
    • /
    • 2016
  • An efficient inductive switching noise suppression technique for mixed-signal integrated circuits (ICs) using standard CMOS digital technology is proposed. The proposed design technique uses a parallel RC circuit, which provides a damping path for the switching noise. The proposed design technique is used for designing a mixed-signal circuit composed of a ring oscillator, a digital output buffer, and an analog noise sensor node for $0.13-{\mu}m$ CMOS digital IC technology. Simulation results show a 47% reduction in the on-chip inductive switching noise coupling from the noisy digital to the analog blocks in the same substrate without an additional propagation delay. The increased power consumption due to the damping resistor is only 67% of that of the conventional source damping technique. This design can be widely used for any kind of analog and high frequency digital mixed-signal circuits in CMOS technology

옵셋 전압을 이용한 일정 스위칭 주파수의 Random PWM 기법 (A Novel Random PWM Technique with a Constant Switching Frequency Utilizing an Offset Voltage)

  • 김도겸;김상훈
    • 전력전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.67-74
    • /
    • 2017
  • This study proposes a novel random pulse-width modulation (PWM) technique with a constant switching frequency utilizing a random offset voltage. The proposed PWM technique spreads switching harmonics by varying the position of an active voltage vector without a switching frequency variation. The implementation of the proposed PWM technique is simple because it does not require additional hardware and complex algorithm. The proposed random PWM technique is compared with the conventional PWM technique on the factors of harmonic spectrum, total harmonic distortion, and harmonic spread factor to confirm the harmonic spread effect. The validity of the proposed method is verified by simulations and experiments on a three-phase inverter drive system.

초고압차단기용 개폐제어기 개발(I) (Development of Controlled Switching Device for High Voltage Circuit Breakers(1))

  • 김동현;김연풍;김종규;이선재;권중록;문종필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.563-565
    • /
    • 2004
  • It is expected to reduce stresses to components of high voltage circuit breaker and transferred switching surge from power system by applying controlled switching technique to high voltage system. This technique has at ready been applied in advanced countries. In this paper, basic principle of controlled switching technique is set up and a device to realize this technique is under developing. Controlled switching device will be improved by applying a method minimizing errors of operating time and by adopting compensation function relative to changes of ambient/operating condition.

  • PDF