• Title/Summary/Keyword: Switching Noise

Search Result 619, Processing Time 0.027 seconds

High Performance PI Current Controller for a Switched Reluctance Motor

  • Ashoornejad, A.;Rashidi, A.;Saghaeian-nejad, S.M.;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.367-373
    • /
    • 2014
  • The most common current controller for the Switched Reluctance Motor (SRM) is the hysteresis controller. This method, however, suffers from such drawbacks as variable switching frequency, consequent audible noise and high current ripple. These disadvantages make this controlling method undesirable for many applications. The alternative solution is the PI controller. Since the fixed gain PI current controller can only be optimized for one operating point, and on the other hand, SR motor is highly nonlinear, PI controller gain should be adjusted according to incremental inductance. This paper presents a novel method for PI current controller gain adaptation which is simple and yields a good performance. The proposed controller has been implemented on a test bench using a eZdsp F28335 board. The performance of the current controller has been investigated in both simulation and experimental tests using a four-phase 8/6 4KW SRM drive system.

A Study on IGBT inverter for sinusoidal wave output PAM type (정현파(正弦波) 출력(出力) PAM형(形) IGBT 인버터에 관한 연구(硏究))

  • Lee, Hyun-Woo;Park, Jong-Gi;Lee, Soo-Heum;Kwon, Soon-Kurl;Suh, Ki-Young;U, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.611-614
    • /
    • 1991
  • In variable speed driving system of three phase induction motor controlled by an inverter, because of the switching of semiconductor devices in inverter, an appreciable amount of harmonic components of voltage waveform can cause the motor to generate losses, torque ripple, acoustic noise and oscillation of semiconductor devices. In this paper a new PAM type PWM inverter using IGBT is described. The output waveforms in the proposed PAM type PWM inverter are investigated both theoretiically and experimentally. The line-voltage waveform is composed of fundamental component and the sidebands of carrier frequency. The lower order harmonics are not included in the output wave form. As each inverter arm does not operate during two-thirds period, the heats, generated in the devices are reduced. That is, the size of the inverter system can he minimized because of the reduction in the heat dissipating equipment.

  • PDF

Design of Programmable 14GHz Frequency Divider for RF PLL (RF PLL용 프로그램 가능한 14GHz 주파수분할기의 설계)

  • Kang, Ho-Yong;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • This paper describes design of a programmable frequency synthesizer for RF PLL with $0.18{\mu}m$ silicon CMOS technology being used as an application of the UWB system like MBOA. To get good performance of speed and noise super dynamic circuits was used, and to get programmable division ratio switching circuits was used. Especially to solve narrow bandwidth problem of the dynamic circuits load resistance value of unit divider block was varied. Simulation results of the designed circuit shows very fast and wide operation characteristics as 1~14GHz frequency range.

The Influence on Traction Return Current by Pantograph Detachment Frequency of High-speed Train (고속철도차량의 이선빈도가 귀선전류에 미치는 영향)

  • Lee, Sung-Gyen;Cho, Young-Maan;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.8-13
    • /
    • 2014
  • Currently it is major problem of electric railway with increasing drive speed such as the arc generated by the pantograph detachment and the distortion current in the motor-block high speed switching. When physical contact between the pantograph and the catenary line is separated, the pantograph detachment arcing occurs and it makes up the conductive noise to the return feeder. We made the EMTP modeling of the railway traction system and the pantograph arc by circuit elements and switches. The influence of pantograph detachment frequency is investigated by changing some frequencies. The over-current occurs in each detachment and it oscillates some time at beginning and stabilizes gradually. The magnitude of over-current is decided by instantaneous value of existing traction return current. If the detachment occurs at a point of peak value or distortion current, the over-current will be more harmful to the power systems connected with the return feeder and will become to arise with increasing detachment frequency.

A Study on a Control Method for Small BLDC Motor Sensorless Drive with the Single Phase BEMF and the Neutral Point (소형 BLDC 전동기 센서리스 드라이브의 단상 역기전력과 중성점을 이용한 제어기법 연구)

  • Jo, June-Woo;Hwang, Don-Ha;Hwang, Young-Gi;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.1-7
    • /
    • 2014
  • Brushless Direct Current(BLDC) Motor is essential to measure a rotor position because of that this motor type needs to synchronize the rotor's position and changeover phase current instead of a brush and commutator used on the existing dc motor. Recently, many researches have studied on sensorless control drive for BLDC motor. The conventional control methods are a compensation value dq, Kalman filter, Fuzzy logic, Neurons neural network, and the like. These methods has difficulties of detecting BEMF accurately at low speed because of low BEMF voltage and switching noise. And also, the operation is long and complex. So, it is required a high-performance microprocessor. Therefore, it is not suitable for a small BLDC motor sensorless drive. This paper presents control methods suitable for economic small BLDC motor sensorless drive which are an improved design of the BEMF detection circuit, simplifying a complex algorithm and computation time reduction. The improved motor sensorless drive is verified stability and validity through being designed, manufactured and analyzed.

Physical Layer Secrecy Performance of RF-EH Networks with Multiple Eavesdroppers

  • Truong, Tien-Vu;Vo, Nhan-Van;Ha, Dac-Binh;Tran, Duc-Dung
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • In this study, we investigate the physical layer secrecy performance of RF energy harvesting (EH) networks over Rayleigh fading channels. The RF-EH system considered here consists of one power transfer station, one source, one destination, and multiple passive eavesdroppers. The source harvests energy from the power transfer station and transmits the information to the destination by using a time switching-based relaying protocol. The eavesdroppers try to extract the transmitted information without an active attack. By using the statistical characteristics of the signal-to-noise ratio (SNR), the exact closed-form expressions of the existence probability of the secrecy capacity and the secrecy outage probability are derived. Further, we analyze the secrecy performance of the system with respect to various system parameters, such as the location of the system elements and the number of eavesdroppers. Finally, the equivalent Monte Carlo simulation results are provided to confirm the correctness of our calculations.

Study of EMI Suppression Method Applied on DC Motor Driver of Power Tail Gate (파워테일게이트의 DC모터구동회로에 적용된 EMI 저감기법에 대한 연구)

  • Kim, Yeong-Sik;Yoon, Yong-Soo;Jung, Hun;Gohng, Jun-Ho;Lee, Sang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents electromagnetic interference(EMI) suppression method applied on the direct current(DC) motor driver for power tail gate control. EMI noise is generated by the fast switching of power devices connected to electric loads. It has become a matter of concern because of the vast increase in the number and sophistication of electronic system in automotive environment. The proposed EMI reduction method is based on the principle of reducing the transient speed of power devices by changing the parameters of the driver circuit related to the power MOSFET. In this paper, power losses were calculated by loss equations and thermal simulation was used to evaluate the effect on printed circuit board. Based on these results, the DC motor driver was fabricated and tested. The proposed method can help to design a DC motor driver which allows it to obtain an acceptable compromise between power losses and EMI.

LMI-BASED $H_{\infty}$ LATERAL CONTROL OF AN AUTONOMUS VEHICLE BY LOOK-AHEAD SENSING

  • Kim, C.S.;Kim, S.Y.;Ryu, J.H.;Lee, M.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.609-618
    • /
    • 2006
  • This paper presents the lateral control of an autonomous vehicle by using a look-ahead sensing system. In look-ahead sensing by an absolute positioning system, a reference lane, constructed by straight lanes or circular lanes, was switched by a segment switching algorithm. To cope with sensor noise and modeling uncertainty, a robust LMI-based $H_{\infty}$ lateral controller was designed by the feedback of lateral offset and yaw angle error at the vehicle look-ahead. In order to verify the safety and the performance of lateral control, a scaled-down vehicle was developed and the location of the vehicle was detected by using an ultrasonic local positioning system. In the mechatronic scaled-down vehicle, the lateral model and parameters are verified and estimated by a J-turn test. For the lane change and reference lane tracking, the lateral controllers are used experimentally. The experimental results show that the $H_{\infty}$ controller is robust and has better performance compared with look-down sensing.

A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction (직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Min-Huei;Kim, Dong-Hee;Hwang, Don-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

A BLMS Adaptive Receiver for Direct-Sequence Code Division Multiple Access Systems

  • Hamouda Walaa;McLane Peter J.
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.243-247
    • /
    • 2005
  • We propose an efficient block least-mean-square (BLMS) adaptive algorithm, in conjunction with error control coding, for direct-sequence code division multiple access (DS-CDMA) systems. The proposed adaptive receiver incorporates decision feedback detection and channel encoding in order to improve the performance of the standard LMS algorithm in convolutionally coded systems. The BLMS algorithm involves two modes of operation: (i) The training mode where an uncoded training sequence is used for initial filter tap-weights adaptation, and (ii) the decision-directed where the filter weights are adapted, using the BLMS algorithm, after decoding/encoding operation. It is shown that the proposed adaptive receiver structure is able to compensate for the signal-to­noise ratio (SNR) loss incurred due to the switching from uncoded training mode to coded decision-directed mode. Our results show that by using the proposed adaptive receiver (with decision feed­back block adaptation) one can achieve a much better performance than both the coded LMS with no decision feedback employed. The convergence behavior of the proposed BLMS receiver is simulated and compared to the standard LMS with and without channel coding. We also examine the steady-state bit-error rate (BER) performance of the proposed adaptive BLMS and standard LMS, both with convolutional coding, where we show that the former is more superior than the latter especially at large SNRs ($SNR\;\geq\;9\;dB$).