• Title/Summary/Keyword: Switching Algorithm

Search Result 1,004, Processing Time 0.035 seconds

Switching Function Implementation based on Graph (그래프에 기초한 스위칭함수 구현)

  • Park, Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1965-1970
    • /
    • 2011
  • This paper proposes the method of switching function implementation using switching function extraction based on graph over finite fields. After we deduce the matrix equation from path number of directional graph, we propose the switching function circuit algorithm, also we propose the code assignment algorithm for nodes which is satisfied the directional graph characteristics with designed circuits. We can implement more optimal switching function compare with former algorithm, also we can design the switching function circuit which have any natural number path through the proposed switching function circuit implementation algorithms. Also the proposed switching function implementation using graph theory over finite fields have decrement number of input-output, circuit construction simplification, increment arithmetic speed and decrement cost etc.

Polynomial Time Algorithm for Satellite Communications Scheduling Problem with Capacity Constrainted Transponder

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.47-53
    • /
    • 2016
  • This paper deals with the capacity constrained time slot assignment problem(CTSAP) that a satellite switches to traffic between $m{\times}n$ ground stations using on-board $k{\leq}_{min}\{m,n\}$ k-transponders switching modes in SS/TDMA time-division technology. There was no polynomial time algorithm to solve the optimal solution thus this problem classified by NP-hard. This paper suggests a heuristic algorithm with O(mn) time complexity to solve the optimal solution for this problem. Firstly, the proposed algorithm selects maximum packet lengths of $\({mn \atop c}\)$ combination and transmits the cut of minimum packet length in each switching mode(MSMC). In the case of last switching mode with inefficient transmission, we applies a compensation strategy to obtain the minimum number of switching modes and the minimum makespan. The proposed algorithm finds optimal solution in polynomial time for all of the experimental data.

Switching rules based on fuzzy energy regions for a switching control of underactuated robot systems

  • Ichida, Keisuke;Izumi, Kiyotaka;Watanabe, Keigo;Uchida, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1949-1954
    • /
    • 2005
  • One of control methods for underactuated manipulators is known as a switching control which selects a partially-stable controller using a prespecified switching rule. A switching computed torque control with a fuzzy energy region method was proposed. In this approach, some partly stable controllers are designed by the computed torque method, and a switching rule is based on fuzzy energy regions. Design parameters related to boundary curves of fuzzy energy regions are optimized offline by a genetic algorithm (GA). In this paper, we discuss on parameters obtained by GA. The effectiveness of the switching fuzzy energy method is demonstrated with some simulations.

  • PDF

Delay Optimization Algorithm for the High Speed Operation of FPGAs (FPGA를 고속으로 동작시키기 위한 지연시간 최적화 알고리듬)

  • Choi, Ick-Sung;Lee, Jeong-Hee;Lee, Bhum-Cheol;Kim, Nam-U
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.7
    • /
    • pp.50-57
    • /
    • 2000
  • We propose a logic synthesis algorithm for the design of FPGAs operating at high speed. FPGA is a novel technology that provides programmability in the field. Because of short turnaround time and low manufacturing cost, FPGA has been noticed as an ideal device for system prototyping. Despite these merits, FPGA has drawbacks, namely low integration and long delay time comparing to ASIC. The proposed algorithm partitions a given circuit into subcircuits utilizing a kernel divisor such that the subcircuits can be performed at the same time, hence reducing the delay of the circuit. Experimental results on the MCNC benchmark show that the proposed algorithm is effective by generating circuits having 19.1% les delay on average, when compared to the FlowMap algorithm.

  • PDF

Robust Estimation Algorithm for Switching Signal and State of Discrete-time Switched Linear Systems (이산 시간 선형 스위치드 시스템의 스위칭 신호 및 상태에 대한 강인한 추정 알고리즘)

  • Lee, Chanhwa;Shim, Hyungbo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.214-221
    • /
    • 2015
  • In this paper, we present robust estimation and detection algorithms for discrete-time switched linear systems whose output measurements are corrupted by noises. First, a mode estimation algorithm is proposed based on the minimum distance criterion. Then, state variables are also observed under the active mode estimate. Second, a detection algorithm is constructed to detect the mode switching of the switched system. With the boundedness of measurement noise, the proposed estimation algorithm returns the exact active mode and approximate state information of the switched system. In addition, the detection algorithm can detect the switching time within a pre-determined time interval after the actual switching occurred.

The Design of Variable Structure Controller for the System in Phase Canonical Form with Incomplete State Measurements (비 측정 상태변수를 갖는 위상 표준형계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최중경
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.902-913
    • /
    • 1992
  • There have been several control schemes for the single input systems with unmeasurable state variables using variable structure control(VSC) theory. In the previous VSC, the systems must be represented in phase canonical form and the complete measurements for each state variable must be assumed. In order to eliminate these restrictions several VSC methods were proposed. And especially for the systems in phase canonical form with unmeasurable state variables, the reduced order switching function algorithm was proposed. But this method has many drawbacks and can not be used in the case of general form (not phase canonical form) dynamic system. Therefore this paper propose new construction method of switching fuction for the systems in phase canonical form, which reduce the restriction of reduced order switching function algorithm. And this algorithm can be realized for any state representation and adopted in the systems where not all states are available for switching function synthesis or control.

  • PDF

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

The Performance Analysis of Burst Error Elimination CVDF Algorithm Using Switching Remote Direction Finding Antenna in VHF (VHF대역에서 원격운용 방향탐지안테나 소자의 스위칭에 의한 상관벡터방향탐지 버스트에러 제거 알고리즘 성능분석)

  • Won, Jong-Mook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.129-138
    • /
    • 2007
  • Recently, Direction Finding(DF) System is using switching DF algorithm to reduce system-weight by eliminating RF cable as much as possible. Also, Correlation Vector Direction Finding(CVDF) algorithms is being used for Fast Direction finding in tactical environment. In this paper, I will give you burst error elimination algorithms and compare the performance in case we use switching CVDF algorithm. Although antenna array is not working, we will successfully perform direction finding when we use this burst error elimination algorithms. Also, we will be completely capable of DF mission despite of meeting the unwanted situation that the monitoring signal disappear in case we use Switching Direction Finding algorithms. That situation frequently occurs under the Frequency Hopping signal circumstances.

Subsection Synchronous Current Harmonic Minimum Pulse Width Modulation for ANPC-5L Inverter

  • Feng, Jiuyi;Song, Wenxiang;Xu, Yuan;Wang, Fei
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1872-1882
    • /
    • 2017
  • Medium voltage drive systems driven by high-power multi-level inverters operating at low switching frequency can reduce the switching losses of the power device and increase the output power. Employing subsection synchronous current harmonic minimum pulse width modulation (CHMPWM) technique can maintain the total harmonic distortion of current at a very low level. It can also reduce the losses of the system, improve the system control performance and increase the efficiency of DC-link voltage accordingly. This paper proposes a subsection synchronous CHMPWM approach of active neutral point clamped five-level (ANPC-5L) inverter under low switching frequency operation. The subsection synchronous scheme is obtained by theoretical calculation based on the allowed maximum switching frequency. The genetic algorithm (GA) is adopted to get the high-precision initial values. So the expected switching angles can be achieved with the help of sequential quadratic programming (SQP) algorithm. The selection principle of multiple sets of the switching angles is also presented. Finally, the validity of the theoretical analysis and the superiority of the CHMPWM are verified through both the simulation results and experimental results.

A Study on an Algorithm of Line Switching and Bus Separation for Alleviating Overloads by the Use of Line Power Tracing and Sensitivity (선로유효전력 Tracing과 민감도를 활용한 선로 과부하 해소 스위칭 및 모선분리 알고리즘에 관한 연구)

  • Lee, Byung-Ha;Hwang, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2007-2016
    • /
    • 2011
  • In this paper, a new algorithm for alleviating overloads in power networks by the use of line power tracing and sensitivity is proposed to perform line switching and bus separation effectively. Also, a new bus separation index based on line power tracing is presented to find the bus to be separated for relieving overloads effectively. By applying the sensitivity of the line flow with respect to the change of the line impedance, both switching-on and switching-off of the lines for alleviating overloads in power networks are performed systematically at once. The number of the considered cases for line switching and bus separation can be greatly reduced and the best combination of line switching and bus separation can be acquired efficiently by the use of the sensitivity and the bus separation index. In order to show the effects of this algorithm, it is applied to a small scale power system of IEEE 39-bus system and practical power systems of KEPCO.