• Title/Summary/Keyword: Switched capacitors

Search Result 65, Processing Time 0.027 seconds

Modified Capacitor-Assisted Z-Source Inverter Topology with Enhanced Boost Ability

  • Ho, Anh-Vu;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1195-1202
    • /
    • 2017
  • This paper presents a novel topology named a modified capacitor-assisted Z-source inverter (MCA-ZSI) based on the traditional ZSI. The impedance network of the proposed MCA-ZSI consists of two symmetrical cells coupled with two capacitors with an X-shape structure, and each cell has two inductors, two capacitors, and one diode. Compared with other topologies based on switched ZSI with the same number of components used at impedance network, the proposed topology provides higher boost ability, lower voltage stress across inverter switching devices, and lower capacitor voltage stress. The improved performances of the proposed topology are demonstrated in the simulation and experimental results.

Fatigue characteristics of $Pb(Zr,Ti)O_3$ capacitors on donor doping

  • Yang, Bee Lyong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.3
    • /
    • pp.113-117
    • /
    • 2002
  • Fatigue characteristics of ferroelectric $Pb(Zr,Ti)O_3$ (PZT) based capacitors through donor doping is reported in this paper. La substitution up to 10% were carried out to study systematically the fatigue behaviors of epitaxial ferroelectric capacitors grown on Si using $(Ti_{0.9}Al_{0.1})N/Pt$ conducting barrier composite. Ferroelectric capacitors substituted with 10% La show sufficient low voltage switched polarization and fatigue free performance. Systematic decrease in the tetragonality of the ferroelectric phase (i.e., c/a ratio) results in the corresponding reduction in coercive voltage, sufficient remnant polarization at 1.5-3V, and good fatigue property.

An Integrated Humidity Sensor Based on Thin Polyimide Films (폴리이미드 박막을 이용한 집적화 습도센서)

  • An, Kwang-Ho;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1388-1390
    • /
    • 1994
  • A polyimide-based capacitive humidity sensor has been designed and fabricated using silicon integrated-circuit technology, and its performance measured. The sensor showed excellent linearity, low temperature coefficient, and low hysteresis over a wide range of relative humidity and temperature. The signal conditioning circuits for detecting relative humidity and converting it to voltage have been developed based on a charge redistribution between capacitors using switched -capacitors.

  • PDF

An Extended Switched-inductor Quasi-Z-source Inverter

  • Deng, Kai;Mei, Fei;Mei, Jun;Zheng, Jianyong;Fu, Guangxu
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.541-549
    • /
    • 2014
  • In this paper, an extended switched-inductor quasi-Z-source inverter (ESL-qZSI) with high boost voltage inversion ability is presented, which combines the SL-qZSI with the traditional boost converter, as well as improves the switched-inductor cell. Compared with the classic qZSI topologies, the proposed topology reduces the voltage stresses of capacitors, power devices and diodes for the same input and output voltage. Furthermore, the conversion efficiency is improved. The operation principle of the proposed topology is analyzed in details, which is followed by the comparison between the three topologies. In addition, the performance of the proposed topology is verified by simulations and experiments.

High Step-up Active-Clamp Converter with an Input Current Doubler and a Symmetrical Switched-Capacitor Circuit

  • He, Liangzong;Zeng, Tao;Li, Tong;Liao, Yuxian;Zhou, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.587-601
    • /
    • 2015
  • A high step-up dc-dc converter is proposed for photovoltaic power systems in this paper. The proposed converter consists of an input current doubler, a symmetrical switched-capacitor doubler and an active-clamp circuit. The input current doubler minimizes the input current ripple. The symmetrical switched-capacitor doubler is composed of two symmetrical quasi-resonant switched-capacitor circuits, which share the leakage inductance of the transformer as a resonant inductor. The rectifier diodes (switched-capacitor circuit) are turned off at the zero current switching (ZCS) condition, so that the reverse-recovery problem of the diodes is removed. In addition, the symmetrical structure results in an output voltage ripple reduction because the voltage ripples of the charge/pump capacitors cancel each other out. Meanwhile, the voltage stress of the rectifier diodes is clamped at half of the output voltage. In addition, the active-clamp circuit clamps the voltage surges of the switches and recycles the energy of the transformer leakage inductance. Furthermore, pulse-width modulation plus phase angle shift (PPAS) is employed to control the output voltage. The operation principle of the converter is analyzed and experimental results obtained from a 400W prototype are presented to validate the performance of the proposed converter.

Step-up Switched Capacitor Multilevel Inverter with a Cascaded Structure in Asymmetric DC Source Configuration

  • Roy, Tapas;Bhattacharjee, Bidrohi;Sadhu, Pradip Kumar;Dasgupta, Abhijit;Mohapatra, Srikanta
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1051-1066
    • /
    • 2018
  • This study presents a novel step-up switched capacitor multilevel inverter (SCMLI) structure. The proposed structure comprises 2 unequal DC voltage sources, 4 capacitors, and 14 unidirectional power switches. It can synthesize 21 output voltage levels. The important features of the proposed topology are its self-voltage boosting and inherent capacitor voltage balancing capabilities. Furthermore, a cascaded structure of the proposed SCMLI with an asymmetric DC voltage source configuration is presented. The proposed topology and its cascaded structure are compared with conventional and other recently developed topologies in terms of different aspects, such as the required components to produce a specific number of output voltage levels, the total standing voltage (TSV) and peak inverse voltage of the structure, and the maximum number of switches in the conducting path. Furthermore, a cost function is developed to verify the cost-effectiveness of the proposed topology with respect to other topologies. The TSV of the proposed topology is significantly lower than those of other topologies. Moreover, the developed topology is cost-effective compared with other topologies. A detailed operating principle, power loss analysis, and selection procedure for switched capacitors are presented for the proposed SCMLI structure. Extensive simulation and experimental studies of a 21-level inverter structure prove the effectiveness and merits of the proposed SCMLI.

Novel Switched-Inductor Quasi-Z-source Inverter

  • Deng, Kai;Zheng, Jianyong;Mei, Jun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.11-21
    • /
    • 2014
  • A novel switched-inductor quasi-Z-source inverter is proposed in this study. Compared with classic topologies, the boost ability of the proposed topology is strengthened. The voltage stress of the capacitors, diodes, and power devices are reduced, and the current ripple of the DC voltage source is suppressed. Conversion efficiency is also improved. The operation principle of the proposed topology is analyzed in detail and compared with that of similar topologies. The feasibility of the proposed topology is verified by simulations and experiments on a laboratory prototype.

Design and Implementation of High-Efficiency, Low-Power Switched-Capacitor DC-DC Converter (고효율, 저전력 Switched-Capacitor DC-DC 변환기의 설계 및 구현)

  • Kim, Nam-Kyun;Kim, Sang-Cheol;Bahng, Wook;Song, Geun-Ho;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.523-526
    • /
    • 2001
  • In this paper, we design and fabricate the high-efficiency and low-power switched-capacitor DC-DC converter. This converter consists of internal oscillator, output driver and output switches. The internal oscillator has 100kHz oscillation frequency and the output switches composed of one pMOS transistor and three nMOS transistors. According to the configuration of two external capacitors, the converter has three functions that are the Inverter, Doubler and Divider. The proposed converter is fabricated through the 0.8$\mu\textrm{m}$ 2-poly, 2-metal CMOS process. The simulation and experimental result for fabricated IC show that the proposed converter has the voltage conversion efficiency of 98% and power efficiency more than 95%.

  • PDF

Gate Drive Circuit of a Classic Converter for a Switched Reluctance Motor (Switched Reluctance Motor용 Classic Converter의 Gate 구동회로)

  • Lim, J.Y.;Cho, K.Y;Shin, D.J.;Kim, C.H.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.325-327
    • /
    • 1995
  • A new gate drive circuit of classic converter for a switched reluctance motor is presented. Conventional gate drive circuit usually consists of the isolated power supplies and signal transferring devices for isolation, such as photo coupler, pulse transformer, and gate drive chips. The proposed gate drive circuit consists of resistors, capacitors, and zenor diodes without isolated power supplies, that make the drive circuit simple and reduce the material cost. The operational modes are classified and analyzed. The characteristics of the phase current and the gate signal of upper switches is investigated with the variation of duty ratio through the experiments.

  • PDF

Switched Capacitor Based High Gain DC-DC Converter Topology for Multiple Voltage Conversion Ratios with Reduced Output Impedance

  • Priyadarshi, Anurag;Kar, Pratik Kumar;Karanki, Srinivas Bhaskar
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.676-690
    • /
    • 2019
  • This paper presents a switched capacitor (SC) based bidirectional dc-dc converter topology for high voltage gain applications. The proposed converter is able to operate with multiple integral voltage conversion ratios based on user input. The architecture of a user-friendly, inductor-less multi-voltage-gain bidirectional dc-dc converter is proposed in this study. The inductor-less or magnetic-less design of the proposed converter makes it effective in higher temperature applications. Furthermore, the proposed converter has a reduced component count and lower voltage stress across its switches and capacitors when compared to existing SC converters. An output impedance analysis of the proposed converter is presented and compared with popular existing SC converters. The proposed converter is simulated in the OrCAD PSpice environment and the obtained results are presented. A 200 W hardware prototype of the proposed SC converter has been developed. Experimental results are presented to validate the efficacy of the proposed converter.