• Title/Summary/Keyword: Switched Shunt

Search Result 21, Processing Time 0.021 seconds

Optimal Control of UPFC and Switched Shunt Capacitor by Using Genetic Algorithm (GA를 이용한 UPFC와 전력용 콘덴서의 최적 제어)

  • Kim, Hak-Man;Kim, Jong-Yul;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.9-11
    • /
    • 2003
  • In power system planing and operation, voltage and reactive power control are very important. The voltage deviation and system losses can be reduced through control of reactive power sources. In general, there are several different reactive power sources, we used UPFC and switched shunt capacitor to improve the voltage profile and to reduce system losses in this study. Since there are many switched shunt capacitors in power system, so it is necessary to coordinate these switched shunt capacitors. In this study, Genetic Algorithm(GA) is used to find optimal coordination of UPFC and switched shunt capacitors in a local area of power system. In case study, the effectiveness of the proposed method is demonstrated in KEPCO's power system. The simulation is performed by PSS/E.

  • PDF

Improvement of the Power Flow Convergency Using Switched Shunt Reactive Power Sensitivity (Switched Shunt의 무효전력 민감도를 이용한 조류계산 수렴성 개선)

  • Oh, Sung-Kyun;Yang, Min-Yuk;Kim, Kern-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.355-360
    • /
    • 2012
  • It is difficult to converge power flow for the power system planning data. The main cause of power flow diverse is reactive power imbalance. A active power could be adjust by ELD or merit order but a reactive power couldn't dispatch before power flow analysis. The lack of reactive power of power system is cause a inadequate voltage drop This paper suggest new reactive power dispatch algorithm using switched shunt admittance. This algorithm uses reactive power sensitivity called switch shunt jacobian. When proposed algorithm applies to real system data that couldn't be conversed in PSS/E the power flow analysis is converged.

Study on the control coordination of STATCOM and Switched Shunt considering their dynamic characteristics in bulk power system (대규모 전력계통에서 STATCOM과 Switched Shunt의 동특성을 고려한 협조제어 검토)

  • Kook, Kyung-Soo;Oh, Tae-Kyoo;Lee, J.H.;Kim, Hak-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.184-186
    • /
    • 2003
  • As STATCOM is considered to be installed in bulk power system, various studios are conducted to establish strategies for system operation considering STATCOM. This paper describes control strategy for coordinating STATCOM with existing switched shunt in bulk power system.

  • PDF

Voltage and Reactive Power Control By Using Genetic Algorithm (유전알고리즘을 이용한 전압/무효전력 제어)

  • Kim, Jong-Yul;Kim, Hak-Man;Kook, Kyung-Soo;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.295-297
    • /
    • 2002
  • In this study, Genetic Algorithm(GA) is applied for voltage and reactive power control in power system. In power system, switched shunt capacitors are used to improve the voltage profile and to reduce power losses. There are many switched shunt capacitors in power system. Therefore, it is necessary to coordinate these switched shunt capacitors. A Genetic Algorithm(GA) is used to find optimal coordination of switched shunt capacitors in power system. The effectiveness of the proposed approach is demonstrated in KEPCO's power system.

  • PDF

On-line coordination control of OLTC and Switched Shunt for enhancement of stability using local data in substation (변전소내 지역정보를 이용하여 안정도 향상을 위한 실시간 OLTC 및 커패시터 협조제어 알고리즘)

  • Kang, Sang-Gyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.119-125
    • /
    • 2012
  • This paper suggest the on-line coordination control between on-load tap changers and Switched Shunts for ensuring the voltage stability using local data obtained from one substation. Inappropriate control of on-load tap changers that are able to maintain voltage profile might cause unintended result that is harmful to system stability, especially voltage stability. This paper utilizes Z-index that could inform the whole system condition from only one substation data. Simulation is performed using the HYPERSIM that is a digital simulator and matlab simulink to confirm the proposed algorithm.

Optimal Control of Voltage and Reactive Power in Local Area Using Genetic Algorithm (유전알고리즘을 이용한 지역계통의 전압 및 무효전력 최적제어)

  • 김종율;김학만;남기영
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • In system planing and operation, voltage and reactive power control is very important. The voltage deviation and system losses can be reduced through control of reactive power sources. In general, there are several different reactive power sources, we used switched shunt capacitor to improve the voltage profile and to reduce system losses. Since there are many switched shunt capacitors in power system, so it if necessary to coordinate these switched shunt capacitors. In this study, Genetic Algorithm (GA) is used to find optimal coordination of switched shunt capacitors in a local area of power system. In case study, the effectiveness of the proposed method is demonstrated in KEPCO's power system. The simulation is performed by PSS/E and the results of simulation are compared with sensitivity method.

A Study on Switching Shunt Regulator for Satellite Power System

  • Park, Jae-dong;Seong, Se-Jin
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 1998
  • The resistive shunting for the fine control of a Direct Energy Transfer(DET) systems is fully developed, but the non-resistive shunting using variable size solar array segments is in progress. This paper presents the spacecraft power control through switching of solar array segments, which uses a fully regulated DET power regulation. This method eliminates a dissipative element and removes the associated design limitations which arise from the dissipative elements for radiating cooling in deep space. The switching shunt regulator comprises the switched Solar Array Shunt(SAS) modules that regulate the solar array power. These SAS modules connect/disconnect the solar array segments to/from the bus according to the loading in the main bus without significant variations in the dissipation level. In this paper, twelve segments are used in the shunting. In order to verify the basis of analysis, the computational result of an analytic loop gain is performed.

  • PDF

Coordination of UPFC and Reactive Power Sources for Steady-state Voltage Control (정상상태 전압제어를 위한 UPFC와 조상설비의 협조)

  • Park, Ji-Ho;Lee, Sang-Duk;Jyung, Tae-Young;Jeong, Ki-Seok;Baek, Young-Sik;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.921-928
    • /
    • 2011
  • This paper presents a new method of local voltage control to achieve coordinative control among UPFC(Unified Power Flow Controller) and conventional reactive compensation equipments, such as switched-shunt and ULTC(Under-Load Tap Changing) transformer. Reactive power control has various difficult aspects to control because of difficulty of system analysis. Recently, the progress of power electronics technologies has lead to commercial availability of several FACTS(Flexible AC Transmission System) devices. The UPFC(Unified Power Flow Controller) simultaneously allows the independent control of active and reactive power flows as well as control of the voltage profile. When conventional reactive power sources and UPFC are used to control system voltage, the UPFC reacts to the voltage deviation faster than the conventional reactive power sources. Keeping reactive power reserve in an UPFC during steady-state operation is always needed to provide reactive power requirements during emergencies. Therefore, coordination control among UPFC and conventional reactive power sources is needed. This paper describe the method to keep or control the voltage of power system of local area and to manege reactive power reserve using PSS/E with Python. The result of simulation shows that the proposed method can control the local bus voltage within the given voltage limit and manege reactive power reserve.

Electromagnetic Transient Program Modeling for Analysis of Switching Over-Voltage on Shunt Reactor (분로리액터 개폐 과전압 해석을 위한 EMTP 모델링)

  • Oh, SeungRyle;Jun, InYoung;Han, KiSun;Kang, JiWon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.393-397
    • /
    • 2020
  • Shunt reactor, a facility for reactive power compensation, is switched several times a day depending on the load pattern. When the circuitbreaker opens the shunt reactor over-voltage is generated by several factors which degrade the insulating performance of internal parts of the circuit-breaker and cause severe voltage stress on the equipment in the power system. Transient phenomenon occurring during the switching of shunt reactor are available in laboratories that verify the performance of the circuit-breaker by simulating the power system. However, it is difficult to measure the transient phenomenon that occurs during actual operation in actual power system due to many limitations. Therefore, this paper deals with the modeling using EMTP to analyze the reignition and current chopping which causes more severe transient recovery voltage in the small inductive current breaking in actual power systems. In addition, this paper analyzes the main phenomenon that cause circuit-breaker failure in opening shunt reactor using EMTP model.

Sliding Mode Control with Fixed Switching Frequency for Four-wire Shunt Active Filter

  • Hamoudi, Farid;Chaghi, A. Aziz;Amimeur, Hocine;Merabet, El Kheir
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.647-657
    • /
    • 2011
  • The present paper proposes a sliding mode control with fixed switching frequency for three-phase three-leg voltage source inverter based four-wire shunt active power filter. The aim is to improve phase current waveform, neutral current mitigation, and reactive power compensation in electric power distribution system. The performed sliding mode for active filter current control is formulated using elementary differential geometry. The discrete control vector is deduced from the sliding surface accessibility using the Lyapunov stability. The problem of the switching frequency is addressed by considering hysteresis comparators for the switched signals generation. Through this method, a variable hysteresis band has been established as a function of the sliding mode equivalent control and a predefined switching frequency in order to keep this band constant. The proposed control has been verified with computer simulation which showed satisfactory results.