• Title/Summary/Keyword: Switch loss

Search Result 552, Processing Time 0.023 seconds

ZVT single phase power factor correction circuit with low conduction loss and low cost (저도통 손실, 저가의 ZVT 단상 역률 보상 회로)

  • Baek, J.W.;Cho, J.G.;Kim, W.H.;Rim, G.H.;Song, D.I.;Kwon, S.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.255-258
    • /
    • 1996
  • A new low conduction loss, low cost zero-voltage-transition power factor correction circuit(PFC) is presented. Conventional PFC which consists of a bridge diode and a boost converter(one switch) always has three semiconductor conduction drops. Two switch type PFCs reduces conduction loss by reducing one conduction drop but the cost is increased because of increased number of active switches. The proposed PFC reduces conduction loss with one switch, which allows low cost. Conduction loss improvement is a little bit less than that of two switch type, but very close up. Operation and features are comparatively illustrated and verified by simulation and experimental results of 1 kW laboratory prototype.

  • PDF

Analysis of Via Loss Characteristic in Embedded DPDT Switch Using SoP-L Fabrication (SoP-L 공정을 이용한 DPDT 스위치를 임베딩 할 경우 스위치 특성에 영향을 주는 Via의 loss 분석)

  • Mun, Jong-Won;Gwon, Eun-Jin;Ryu, Jong-In;Park, Se-Hoon;Kim, Jun-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.557-558
    • /
    • 2008
  • This paper presents the effects of via losses to be connected with an embedded DPDT(Double Pole Double Thru) in a substrate. The substrate consists of two ABF(Ajinomoto Bonding Film) and a Epoxy core. In order to verify and test effects of via, via chains in a substrate using SoP-L process are proposed and measured. Via loss can be calculated as averaging the total via holes. The exact loss of a DPDT switch embedded in substrate are extracted by using the results of via chain and measured data from embedded DPDT. The calculated one via insertion loss is about 0.0005 dB on basis of measured via chains. This result confirms very low loss in via. So the inserti on loss of the embedded switch is confirmed only switch loss as loss is 0.4 dB.

  • PDF

Improved Zero-Current-Switching(ZCS) PWM Switch Cell with Minimum Additional Conduction Losses

  • Park, Hang-Seok;Cho, B.H.
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of DC to DC PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of DC to DB PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype converter operating at 40 kHz.

  • PDF

Quad-Band Antenna Switch Module with Integrated Passive Device and Transistor Switch (수동 집적 회로 및 트랜지스터 스위치를 통한 4중 대역 안테나 스위치)

  • Jeong, In-Ho;Shin, Won-Chul;Hong, Chang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1287-1293
    • /
    • 2008
  • Antenna switch module(ASM) for quad-band was developed. This module was integrated by RFIPD(RF integrated passive device) and transistor switch instead of LTCC-type device using low pass filters, diodes and passive elements in RF front end module for cellular phone. This module leads to low cost and miniaturization(The area is $5{\times}5\;mm$ and the thickness is 0.8 mm). The insertion loss and the return loss of each band were averagely measured as 1.0 dB(insertion loss), 15.1 dB(GSM/EGSM return loss) and 19 dB(DCS/PCS return loss), respectively.

Zero Voltage Switched Converter with Reduced Conduction Loss of Auxiliary Switch (보조 스위치의 전도손실을 줄인 영전압 스위칭 방식의 컨버터)

  • Joung, Gyu-Bum
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.131-137
    • /
    • 1999
  • New zero voltage switched(ZVS) converter in which main switch is switched at zero voltage is proposed. A resonant inductor of conventional ZVS PW converter is replaced to two small saturable inductors in order to reduce conduction loss of auxiliary switch. Therefore, the switching loss of main switch is very low, and conduction losses of the main and auxiliary switch are lowered. The ZVS and above characteristics are verified by experimental results for a 200 kHz operation.

  • PDF

Wafer-Level Package of RF MEMS Switch using Au/Sn Eutectic Bonding and Glass Dry Etch (금/주석 공융점 접합과 유리 기판의 건식 식각을 이용한 고주파 MEMS 스위치의 기판 단위 실장)

  • Kang, Sung-Chan;Jang, Yeon-Su;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • A low loss radio frequency(RF) micro electro mechanical systems(MEMS) switch driven by a low actuation voltage was designed for the development of a new RF MEMS switch. The RF MEMS switch should be encapsulated. The glass cap and fabricated RF MEMS switch were assembled by the Au/Sn eutectic bonding principle for wafer-level packaging. The through-vias on the glass substrate was made by the glass dry etching and Au electroplating process. The packaged RF MEMS switch had an actuation voltage of 12.5 V, an insertion loss below 0.25 dB, a return loss above 16.6 dB, and an isolation value above 41.4 dB at 6 GHz.

A study on the Characteristics of RF switch module on 1${\sim}$3 GHz Band (1${\sim}$3 GHz 대역의 GMS Type Switch Module 특성에 관한 연구)

  • Kim, In-Sung;Song, Jae-Sung;Suh, Young-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1673-1675
    • /
    • 2004
  • The design, modeling and measurement of RF switch module for GSM applications is presented in this paper. RF switch module is constructed using a LTCC multi-layer switching circuit and integrated low pass filter. Insertion and return loss of the low pass filter were designed less than 0.3 dB and better than 12.7 dB at 900 MHz. The RF switch module contained 10 embedded passives and 3 surface mount components integrated on $4.6{\times}4.8{\times}1.2$ mm, 6-layer multi-layer integrated circuit. The insertion loss of switch module was measured at 900 MHz was 11 dB.

  • PDF

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

High Frequency Inverter for Induction Heating with Multi-Resonant Zero Current Switching (다중공진 영전류 스위칭을 이용한 고주파 유도가열용 인버터)

  • Ra, B.H.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.38-40
    • /
    • 2002
  • In the case of conventional high frequency inverter, with damage of switch by surge voltage when switch gets into compulsion extinction by load accident and so on because reactor is connected by series to switch, or there was problem of conduction loss by reactor's resistivity component, Also, it has controversial point of that can not ignore conduction loss of switch in complete work kind action of soft switching. In this paper, as high frequency induction heating power supply, we propose half bridge type multi resonance soft switching high frequency inverter topology that can realize high amplitude operation of load current with controlling switch current by multiplex resonance, mitigating surge voltage when switch gets into compulsion extinction and to be complete operation of zero current switching by opposit parallel connected reactor to inverter switch. and do circuit analysis for choice of most suitable circuit parameter of circuit

  • PDF

A Single-Pole, Eight-Throw, Radio-Frequency, MicroElectroMechanical Systems Switch for Multi-Band / Multi-Mode Front-End Module

  • Kang, Sung-Chan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.77-81
    • /
    • 2011
  • This paper presents a single-pole eight-throw(SP8T) switch based on proposed a radio-frequency(RF) microelectromechanical systems (MEMS) switches. The proposed switch was driven by a double stop(DS) comb drive, with a lateral resistive contact. Additionally, the proposed switch was designed to have tapered signal line and bi-directionally actuated. A forward actuation connects between signal lines and contact part, and the output becomes on-state. A reverse actuation connects between ground lines and contact part, and the output becomes off-state. The SP8T switch of 3-stage tree topology was developed based on an arrangement of the proposed RF MEMS switches. The developed SP8T switch had an actuation voltage of 12 V, an insertion loss of 1.3 dB, a return loss of 15.1 dB, and an isolation of 31.4 dB at 6 GHz.