• Title/Summary/Keyword: Swelling behavior

Search Result 257, Processing Time 0.038 seconds

Effect of Water State in Electroactive Chitosan/Poly (Diallyldimethylammonium Chloride) Hydrogels on Bending Behavior at Various pH Conditions (키토산/폴리디아릴디메틸암모늄클로라이드 전기감응성 고분바 하이드로겔의 굽힘 거동에서 물 상태에 따른 영향 분석)

  • Yoon, Seong-Gil;Kim, Seon-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.344-347
    • /
    • 2007
  • A interpenetrating polymer network (IPN) hydrogel, composed of chitosan (CS) and poly(diallydimethylammonium chloride) (PDADMAC) was prepared, which exhibited electrical sensitive behavior. The swelling behavior of the CS/PDADMAC SIPN hydrogel was studied by immersion of the gel into various pH buffer solutions, and their stimuli response in electric fields also investigated. In order to clarify the relationship between the equilibrium swelling ratio and bending behavior of the SIPN hydrogels, the state of water in the SIPN hydrogel was also investigated using differential scanning calorimetry (DSC).

Synthesis and Characterization of Biodegradable Elastic Hydrogels Based on Poly(ethylene glycol) and Poly(${\varepsilon}-caprolactone$) Blocks

  • Im, Su-Jin;Choi, You-Mee;Subramanyam, Elango;Huh, Kang-Moo;Park, Ki-Nam
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • Novel biodegradable elastic hydrogels, based on hydrophilic and hydrophobic polymer blocks, were synthesized via the radical crosslinking reaction of diacrylates of poly(ethylene glycol) (PEG) and poly(${\varepsilon}-caprolactone$) (PCL). PEG and PCL diols were diacrylated with acryloyl chloride in the presence of triethylamine, with the reaction confirmed by FT-IR and $^1H-NMR$ measurements. The diacrylate polymers were used as building-blocks for the syntheses of a series of hydro gels, with different block compositions, by simply varying the feed ratios and molecular weights of the block components. The swelling ratio of the hydrogels was controlled by the balance between the hydrophilic and hydrophobic polymer blocks. Usually, the swelling ratio increases with increasing PEG content and decreasing block length within the network structure. The hydrogels exhibited negative thermo-sensitive swelling behavior due to the coexistence of hydrophilic and hydrophobic polymer components in their network structure, and such thermo-responsive swelling/deswelling behavior could be repeated using a temperature cycle, without any significant change in the swelling ratio. In vitro degradation tests showed that degradation occurred over a 3 to 8 month period. Due to their biodegradability, biocompatibility, elasticity and functionality, these hydrogels could be utilized in various biomedical applications, such as tissue engineering and drug delivery systems.

Influence of Nanodispersed Organoclay on Rheological and Swelling Properties of Ethylene Propylene Diene Terpolymer

  • Acharya Himadri;Srivastava Suneel K.
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.132-139
    • /
    • 2006
  • The dispersion of organoclay in ethylene propylene diene terpolymer (EPDM) matrix was correlated with the rheological and swelling properties of nanocomposites. X-ray diffraction pattern (XRD) and transmission electron microscopic (TEM) analysis exhibited the disordered-intercalated structure of EPDM/organoclay nanocomposite. The extent of the disordered phase increased with increasing organoclay content up to a limiting value of 3 wt% after which equilibrium tended towards intercalation. The dispersion effect of organoclay in EPDM matrix was clarified by the physicochemical properties like rheological response and swelling thermodynamics in toluene. The increase in viscoelastic properties of EPDM nanocomposite with increasing organoclay content up to 3 wt%, followed by a subsequent decrease up to 4 wt%, was correlated in terms of the disordered and ordered states of the dispersed nano-clay sheets. Swelling measurements revealed that the change in entropy of the swelling increased with the increase in disorder level but decreased with the increase in intercalation level of organoclay in the disordered-intercalated nanocomposite. The increase in solvent uptake was comparable with the free volume in EPDM matrix upon inclusion of silicate particles, whereas the inhibition in solvent uptake for higher organoclay loading was described by bridging flocculation.

INFLUENCE OF FUEL-MATRIX INTERACTION ON THE BREAKAWAY SWELLING OF U-MO DISPERSION FUEL IN AL

  • Ryu, Ho Jin;Kim, Yeon Soo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.159-168
    • /
    • 2014
  • In order to advance understanding of the breakaway swelling behavior of U-Mo/Al dispersion fuel under a high-power irradiation condition, the effects of fuel-matrix interaction on the fuel performance of U-Mo/Al dispersion fuel were investigated. Fission gas release into large interfacial pores between interaction layers and the Al matrix was analyzed using both mechanistic models and observations of the post-irradiation examination results of U-Mo dispersion fuels. Using the model predictions, advantageous fuel design parameters are recommended to prevent breakaway swelling.

Synthesis, Characterization and Swelling Properties of Chitosan/Poly(acrylic acid-co-crotonic acid) Semi-Interpenetrating Polymer Networks (Chitosan/Poly(acrylic acid-co-crotonic acid) Semi-IPN의 합성, 분석 및 팽윤거동)

  • Hosseinzadeh, Hossein;Alijani, Darioush
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.588-595
    • /
    • 2014
  • A semi-interpenetrating polymer network (semi-IPN) hydrogel composed of crosslinked chitosan and poly (acrylic acid-co-crotonic acid) was prepared in the presence of glutaraldehyde (GA) as a crosslinker. Fourier-transform infrared, thermogravimetric analysis and scanning electron microscopy were employed to confirm the structure of the semi-IPN hydrogel. The swelling capacity of hydrogel was shown to be affected by the monomers weight ratio, chitosan content, initiator and GA concentrations. The results also indicated that the semi-IPN hydrogel had different swelling capacity at various pHs. Additionally, the swelling behavior of the hydrogel was investigated in aqueous solutions of NaCl, $CaCl_2$, and $AlCl_3$.

Controlled Release Behavior of Temperature Responsive Composite Hydrogel Containing Activated Carbon

  • Yun, Ju-Mi;Im, Ji-Sun;Jin, Dong-Hwee;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.283-288
    • /
    • 2008
  • The composites of temperature-sensitive hydrogel and activated carbons were prepared in order to improve both the mechanical strength of hydrogel matrix and the loading capacity of drug in a hydrogel drug delivery system. The swelling of composite hydrogel was varied depending on the temperature. Both the swelling and the release behavior of the composite hydrogel were varied depending on the kind of activated carbon. The release behavior showed the high efficiency which is important for practical applications.

Physico-chemical Behavior of Polymeric Hydrogels

  • Soh, Dae-Wha;Mun, G.A.;Nam, Irina;Nurkeeva, Z.S.;Shaikhutdinov, E.M.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.592-595
    • /
    • 2002
  • New polymeric hydrogels based on vinyl ethers have been synthesized by the ${\gamma}$-initiated polymerization method. Their physical chemistry and physical mechanical properities have been studied. It has been shown that structure and swelling behavior of the hydrogels can be regulated by the changing of synthesis conditions nature of monomers. Novel stimuli-sensitive polymers have been synthesized by the varying of macrochains hydrophilic-hydrophobic balance. The some biomedical aspects of application of hydrogels in capacity of drain aging polymeric materials in ophthalmology surgery, implants in plastic surgery as well as drug delivery systems have been investigated.

  • PDF

Swelling and Pasting Properties of Non-Waxy Rice Flour/Food Gum Systems

  • Song, Ji-Young;An, Young-Hyun;Kim, Jae-Suk;Choi, Jung-Do;Kim, Young-Chang;Shin, Mal-Shick
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.207-213
    • /
    • 2006
  • The effects of gellan gum (from S. paucimobilis), EPS-CB (exopolysaccharide from S. chungbukensis), and a series of commercial gums (arabic gum, xanthan gum, guar gum, deacyl gellan gum), on the swelling, rheological, and pasting properties of non-waxy rice flour dispersions were investigated. The swelling properties of rice flours in gellan or guar gum dispersion after heating were found to have increased with increasing gum concentrations, but the swelling properties of rice flour/other gum systems decreased with increasing concentrations. The rice flour/gum mixtures showed high shear-thinning flow behavior (n=0.14-0.32), and consistency index (K) was higher in guar gum than other gum dispersions. The initial pasting temperatures and peak times increased along with increasing gum concentration. The peak viscosity of rice flour increased in guar gum and deacyl gellan dispersions, and the breakdown and setback viscosity of the rice flour paste was lowest in the xanthan gum system, but remained higher than those of the control. The apparent viscosities of the rice flour/gellan gum mixture pastes were the highest among the tested combinations.

Effects of Carbon Black on Mechanical Properties and Curing Behavior of Liquid Silicone Rubber (LSR) (Carbon Black 첨가에 따른 액상 실리콘 고무(LSR)의 기계적 특성 및 경화 거동 분석)

  • Beom-Joo Lee;Seon-Ju Kim;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.27-32
    • /
    • 2023
  • Liquid silicon rubber (LSR) has fine thermal compatibility and is widely used in various fields such as medical care and automobiles because it is easy to implement products with good fluidity. With the recent development of flexible sensors, the focus has been on manufacturing conductive elastomers, such as silicone as elastic materials, and carbon black, CNT, and graphene are mainly used as nanomaterials that impart conductive phases. In this study, mechanical behavior and curing behavior were measured and analyzed to manufacture a CB-LSR complex by adding Carbon Black to LSR and to identify properties. As a result of the compression test, the elastic modulus tended to increase as carbon black was added. When the swelling test and the compression set test were conducted, the swelling rate tended to decrease as the content of carbon black increased, and the compression set tended to increase. In addition, DSC measurements showed that the total amount of reaction heat increased slightly as the carbon black content increased. It is considered that carbon black was involved in the crosslinking of LSR to increase the crosslinking density and have a positive effect on oil resistance reinforcement.

Study on swelling of starch granules using gravitational field-flow fractionation (GrFFF) (중력 장-흐름 분획법을 이용한 전분 입자의 swelling에 관한 연구)

  • Kim, Sun-Tae;Seo, So-Yeon;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.249-255
    • /
    • 2011
  • Swelling of starch granules by water-sorption causes a progressive or sometimes abrupt change in sorption behavior as a result of structural alterations and the possible exposure of new sites with high affinity for water. It is thus of interest to examine the time-dependent change in the size or shape of the starch granules. Gravitational field-flow fractionation (GrFFF) utilizes the earth's gravity as the external field, and is useful for separation of micron-sized particles with larger particles eluting earlier than smaller ones. In this study, GrFFF was used to monitor the swelling of two starch granules, potato starch and sweet potato starch during contact time of 11-12 days at room temperature in water. Results from GrFFF were compared with those obtained from optical microscope (OM). For both starch granules, the mean sizes were increased with time spent in water.