Influence of Nanodispersed Organoclay on Rheological and Swelling Properties of Ethylene Propylene Diene Terpolymer

  • Acharya Himadri (Department of Chemistry, Indian Institute of Technology) ;
  • Srivastava Suneel K. (Department of Chemistry, Indian Institute of Technology)
  • Published : 2006.04.01

Abstract

The dispersion of organoclay in ethylene propylene diene terpolymer (EPDM) matrix was correlated with the rheological and swelling properties of nanocomposites. X-ray diffraction pattern (XRD) and transmission electron microscopic (TEM) analysis exhibited the disordered-intercalated structure of EPDM/organoclay nanocomposite. The extent of the disordered phase increased with increasing organoclay content up to a limiting value of 3 wt% after which equilibrium tended towards intercalation. The dispersion effect of organoclay in EPDM matrix was clarified by the physicochemical properties like rheological response and swelling thermodynamics in toluene. The increase in viscoelastic properties of EPDM nanocomposite with increasing organoclay content up to 3 wt%, followed by a subsequent decrease up to 4 wt%, was correlated in terms of the disordered and ordered states of the dispersed nano-clay sheets. Swelling measurements revealed that the change in entropy of the swelling increased with the increase in disorder level but decreased with the increase in intercalation level of organoclay in the disordered-intercalated nanocomposite. The increase in solvent uptake was comparable with the free volume in EPDM matrix upon inclusion of silicate particles, whereas the inhibition in solvent uptake for higher organoclay loading was described by bridging flocculation.

Keywords

References

  1. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, and T. Karauchi, J. Polym. Sci.; Part A: Polym. Chem., 31, 983 (1993) https://doi.org/10.1002/pola.1993.080310418
  2. M. Alexandre and P. Dubois, Mater. Sci. Eng., R28, 1 (2000)
  3. S. S. Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  4. R. A. Pethrick, in Polymer-Clay Nanocomposites, T. J. Pinnavaia and G. W. Beall, Eds., John Wiley & Sons Ltd, Chichester, UK 2002, vol. 51, p. 464
  5. K. Gonsalves and X. Chen, in Materials Research Soc. Symposium Proceedings, Materials Research Society, Warrendale, PA 1996, vol. 435, p. 55
  6. E. P. Giannelis, Advanced Materials, 8, 29 (1996) https://doi.org/10.1002/adma.19960080104
  7. M. Pramanik, S. K. Srivastava, B. K. Samantaray, and A. K. Bhowmick, J. Polym. Sci.; Part B: Polym. Phys., 40, 2065 (2002) https://doi.org/10.1002/polb.10266
  8. K. G. Gatos, N. S. Sawanis, A. A. Apostolov, R. Thomann, and J. Karger-Kocsis, Macromol. Mater. Eng., 289, 1079 (2004) https://doi.org/10.1002/mame.200400214
  9. G. Galgali, S. Agarwal, and A. Lele, Polymer, 45, 6059 (2004) https://doi.org/10.1016/j.polymer.2004.06.027
  10. M. Pramanik, S. K. Srivastava, B. K. Samantaray, and A. K. Bhowmick, Macromol. Res., 11, 260 (2003) https://doi.org/10.1007/BF03218362
  11. S. Su, D. D. Jiang, and C. A. Wilkie, Polym. Degrad. Stabil., 83, 321 (2004) https://doi.org/10.1016/S0141-3910(03)00277-5
  12. J. Xiao, Y. Hu, Z. Wang, Y. Tang, Z. Chen, and W. Fan, Eur. Polym. J., 41, 1030 (2005) https://doi.org/10.1016/j.eurpolymj.2004.11.025
  13. A. Ranade, N. A. D'Souza, and B. Gnade, Polymer, 43, 3759 (2002) https://doi.org/10.1016/S0032-3861(02)00106-4
  14. D. A. Brune and J. Bicerano, Polymer, 43, 369 (2002) https://doi.org/10.1016/S0032-3861(01)00543-2
  15. Y. T. Vu, J. E. Mark, L. H. Pham, and M. Engelhardt, J. Appl. Polym. Sci., 82, 1391 (2001) https://doi.org/10.1002/app.1976
  16. H. Acharya, M. Pramanik, S. K. Srivastava, and A. K. Bhowmick, J. Appl. Polym. Sci., 93, 2429 (2004) https://doi.org/10.1002/app.20774
  17. M. Feng, F. Gong, C. Zhao, G. Chen, S. Zhang, and M. Yang, Polym. Int., 53, 1529 (2004) https://doi.org/10.1002/pi.1593
  18. M. Zanetti, G. Camino, D. Canavese, A. B. Morgan, F. J. Lamelas, and C. A. Wilkie, Chem. Mater., 14, 189 (2002) https://doi.org/10.1021/cm011124t
  19. H. J. Walls, J. Zhou, J. A. Yerian, P. S. Fedkiw, S. A. Khan, M. K. Stowe, and G. L. Baker, J. Power Sources, 89, 156 (2000) https://doi.org/10.1016/S0378-7753(00)00424-9
  20. C. W. Macosko, Rheology: Principles, Measurements, and Applications,VCH Publisher, New York, 1994
  21. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd edn., Wiley, New York, 1980
  22. Y. H. Hyun, S. T. Lim, H. J. Choi, and M. S. Jhon, Macromolecules, 34, 8084 (2001) https://doi.org/10.1021/ma002191w
  23. J. Ren, A. S. Silva, and R. Krishnomoorty, Macromolecules, 33, 3739 (2000) https://doi.org/10.1021/ma992091u
  24. E. Manias, G. Hadziioannou, and T. G. Brinke, Langmuir, 12, 4587 (1996) https://doi.org/10.1021/la950902r
  25. G. Schmidt, A. I. Nakatani, P. D. Butler, A. Karim, and C. C. Han, Macromolecules, 33, 7219 (2000) https://doi.org/10.1021/ma9918811
  26. L. Onsager, Ann. NY Acad. Sci., 51, 627 (1949) https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
  27. E. A. DiMarzio, A. J. M. Yang, and S. C. Glotzer, J. Res. Nat. Inst. Stan. Techn., 100, 173 (1995) https://doi.org/10.6028/jres.100.013
  28. S. Boucard, J. Duchet, J. F. Gérard, P. Prele, and S. Gonzalez, Macromolecular Symposia, 194, 241 (2003)
  29. R. Krishnomoorti and E. P. Giannelis, Macromolecules, 30, 4097 (1997) https://doi.org/10.1021/ma960550a
  30. S. Agarwal and R. Salovey, Polym. Eng. Sci., 28, 4313 (1995)
  31. T. A. Witten, L. Leibler, and P. A. Pincus, Macromolecules, 23, 824 (1990) https://doi.org/10.1021/ma00205a022
  32. T. G. Gopakumar, J. A. Lee, M. Kontopoulou, and J. S. Parent, Polymer, 43, 5483 (2002) https://doi.org/10.1016/S0032-3861(02)00403-2
  33. H. S. Jeon, J. K. Rameshwaram, G. Kim, and D. H. Weinkauf, Polymer, 44, 5749 (2003) https://doi.org/10.1016/S0032-3861(03)00466-X
  34. M. J. Solomon, A. S. Almusallam, K. F. Seefeldt, A. Somwangthanaroj, and P. Varadan, Macromolecules, 34, 1864 (2001) https://doi.org/10.1021/ma001122e
  35. M. Pramanik, H. Acharya, and S. K. Srivastava, Macromol. Mat. Eng., 289, 562 (2004) https://doi.org/10.1002/mame.200400021
  36. K. Ratanarat, M. Nithitanakul, D. C. Martin, and R. Magaraphan, Rev. Adv. Mater. Sci., 5, 187 (2003) https://doi.org/10.1016/j.stam.2003.09.012
  37. R. A. Vaia, in Polymer-Clay Nanocomposites, T. J. Pinnavaia and G. W. Beall, Eds., John Wiley & Sons Ltd, Chichester, 2000, p. 229
  38. J. Swenson, M. V. Smallry, H. L. M. Hatharasinghe, and G. Fragneto, Langmuir, 17, 3813 (2001) https://doi.org/10.1021/la001353e
  39. M. Murat and G. S. Grest, Macromolecules, 29, 1278 (1996) https://doi.org/10.1021/ma951219e
  40. P. J. Flory, Principles of Polymer Chemistry, Ithaca, NY, Cornell University, 1953, p. 576
  41. Encyclopedia of Polymer Science and Engineering, 2nd edition, John Wiley & Sons, New York, 1990, vol. 5
  42. D. W. Van Krevelen and P. J. Hoftyzer, Properties of Polymers, 2nd complementary revised edition, Elsevier, New York, 1976
  43. Encyclopedia of Polymer Science and Engineering, 2nd edition, John Wiley & Sons, New York, 1990, vol. 15