• 제목/요약/키워드: Swash Plate

검색결과 118건 처리시간 0.025초

정압력원을 이용한 에너지 절감 유압 시스템에 관한 연구 (A Study on the Energy Saving Hydraulic System Using Constant Pressure System)

  • 조용래;윤종일;윤주현;이민수;조우근;윤홍수;안경관
    • 유공압시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.7-12
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

자동차 공조장치의 가변압축기 ECV 유량 분석 (Analysis of flow rate of variable displacement compressor ECV in automobile air conditioning control system)

  • 정준영;조행묵
    • 에너지공학
    • /
    • 제22권4호
    • /
    • pp.394-398
    • /
    • 2013
  • 최근들어 자동차에어콘 콤프레셔의 전기마그네트식 콘트롤밸브는 내부형 스워시 프레이트형을 사용하고 있다. 이 시스템은 외부로부터 공급되는 전류량(신호)에 의하여 작동되며 동시에 스워시판 작동에 의한 압력은 냉매가 흐르는 비율에 의하여 결정된다. 본 논문에서는 압축기의 크랭크케이스 압력이 전기마그네트 콘트롤 밸브 전기 흐름량에 따른 유량의 값을 측정하여 엔진의 효율을 향상시키고자 한다.

전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어 (Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve)

  • 정동수;김형의;강이석
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

정압력원을 이용한 에너지 절감 유압 시스템에 관한 실험적 연구 (An Experimental Study on the Energy Saving Hydraulic System using Constant Pressure System)

  • 조용래;안경관;윤주현;이민수;조우근;윤홍수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1081-1086
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

On the Instantaneous and Average Piston Friction of Swash Plate Type Hydraulic Axial Piston Machines

  • Jeong, Heon-Sul;Kim, Hyoung-Eui
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1700-1711
    • /
    • 2004
  • Piston friction is one of the important but complicated sources of energy loss of a hydraulic axial piston machine. In this paper, two formulas are derived for estimating instantaneous piston friction force and average piston friction moment loss. The derived formula can be applicable for piston guides with or without bushing as well as for axial piston machines of motoring and pumping operations. Through the formula derivation, a typical curve shape of friction force found from several experimental measurements during one revolution of a machine is clearly explained in this paper that it is mainly due to the equivalent friction coefficient dependent on its angular position. Stribeck curve effect can easily be incorporated into the formula by replacing outer and inner friction coefficients at both edges of a piston with the coefficient given by Manring (1999) considering mixed/boundary lubrication effects. Novel feature of the derived formula is that it is represented only by physical dimensions of a machine, hence it allows to estimate the piston friction force and loss moment of a machine without hardworking experimental test.

저속에서 피스톤 슈 내부 보조 링의 윤활 효과 분석 (Investigation of the Tribological Effects of the Auxiliary Inner Ring for Piston Shoes at Low Speeds)

  • 이성렬;김종혁;홍예선;김병곤;문진삼;문준혁
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.21-26
    • /
    • 2015
  • In order to design a swash plate type pump for electro-hydrostatic actuators the performance of the hydrostatic piston shoe bearings in the low speed range needs to be examined, since the pump operates frequently at low speeds, compensating for position control errors as a control element. As a common practice, piston shoes are equipped with inner rings as an auxiliary element to enhance their tribological performance. In this paper, the effects of the inner rings of the piston shoes on the frictional loss and leakage flow rate were investigated, where three piston shoe models, with different inner ring shapes and different inlet orifice sizes, were integrated. The test results showed that a large inner ring and small inlet orifice were advantageous for reducing both the frictional loss and leakage flow rate; this could also be confirmed by computational analyses.

강한 측력이 작용하는 피스톤 펌프의 왕복동 피스톤 기구 부에서의 윤활모형에 관한 연구 (Lubrication Modeling of Reciprocating Piston in Piston Pump with High Lateral Load)

  • 신정훈;정동수;김경웅
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.116-123
    • /
    • 2014
  • The objective of this study is to model and simulate the nonlinear lubrication performance of the sliding part between the piston and cylinder wall in a hydrostatic swash-plate-type axial piston pump. A numerical algorithm is developed that facilitates simultaneous calculation of the rotating body motion and fluid film pressure to observe the fluid film geometry and power loss. It is assumed that solid asperity contact, so-called mixed lubrication in this study, invariably occurs in the swash-plate-type axial piston pump, which produces a higher lateral moment on the pistons than other types of hydrostatic machines. Two comparative mixed lubrication models, rigid and elastic, are used to determine the reaction force and sliding friction. The rigid model does not allow any elastic deformation in the partial lubrication area. The patch shapes, reactive forces, and virtual local elastic deformation in the partial lubrication area are obtained in the elastic contact model using a simple Hertz contact theory. The calculation results show that a higher reaction force and friction loss are obtained in the rigid model, indicating that solid deformation is a significant factor on the lubrication characteristics of the reciprocating piston part.

정압력원을 이용한 에너지 절감 유압 제어 시스템에 관한 실험적 연구 (An Experimental Study on the Energy Saving Hydraulic Control System Using Constant Pressure System)

  • 조용래;안경관;김정수;윤주현
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.68-76
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

사판식 액셜 피스톤 펌프에서의 압력맥동 해석모형에 관한 연구 (A Study on Models for the Analysis of Pressure Pulsation in a Swash-Plate Type Axial Piston Pump)

  • 신정훈;김형의;김경웅
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.314-320
    • /
    • 2011
  • Although swash-plate type axial piston pumps have the merits of wide operating conditions and high efficiency, the characteristics of pressure pulsation and flow ripple which result in system noise generation are on-going problems. This research examined the analytic models of the dynamic oil pressure and flow characteristics in the pump. A new mathematical model which considered the pressure behaviors of each cylinder and discharge piping was developed to analyze the pump pressure and flow. This model also considered the leakages in the clearances which many researchers have ignored so far. Using the developed model, numerical calculations were implemented. The results showed that widely used simple model which considered only a single cylinder can not predict actual discrete flow dynamics and that fluid inertia effect has to be considered in the mathematical model. Several critical parameters were discussed such as port volume and discharge resistance on the assumption that the pipe length is not so long. The effect of leakages was studied on the final stage.

피스톤 펌핑 위상이 텐덤형 사판식 액셜 피스톤 펌프의 진동, 소음에 미치는 영향에 관한 연구(2) (A Study on Effects of Piston Pumping Phase on Vibration and Noises of Tandem Swash Plate Type Axial Piston Pump(2))

  • 박성환;이진걸
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.31-39
    • /
    • 1999
  • Previous researches and experiments have already verified that the primary noise source of high pressure tandem axial thpe piston pump is fluid-borne noise from the process of oil distribution between the kidney-shaped port and valve plate. So, many researchers have improved pressure gradients and reduced sound levels by applying pre-compression and pre-decompression metering grooves to valve plate. In practice however, the sound level of th high pressure tandem axial type piston pump is still undesirable. This paper testified the effect of pumping phase of the piston on vibration and noise of th high pressure tandem axial type piston pump on the best of theoretical research in $this^(1)$. Therefore considering the pumping phase of the piston when assembling the tandem axial type piston pump, it is possible to reduce 1.5~2[dB]of sound level.

  • PDF