• Title/Summary/Keyword: Sustainable Yield

Search Result 254, Processing Time 0.027 seconds

Emergy Evaluation of Resource Values for Rice Paddy Production in South Korea (에머지 분석을 통한 논벼 생산의 자원적 가치 평가)

  • Lee, Jimin;Kim, Taegon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.4
    • /
    • pp.35-43
    • /
    • 2014
  • The purpose of this study is to analyze emergy flows of rice for evaluating the value of rice production and sustainability. Emergy analysis evaluates the sustainability of systems or processes considering all the inputs to make a product or a sevice. In this study, we analyzed the emergy flows and indices of rice productionand compared the regional emergy values using statisticcal analysis: input materials, hours per unit area(10a), and production costs. As the results, we found that the rates of external investment (EIR= 18.87) and environmental loading (ELR=21.7) are significantly high during the rice cultivation. However, emergy yield ratio(EYR) shows that rice is a valuable resource because EYR is 5.12 and environmental Sustainability IndexSI value is as low as 0.24 and it shows rice has low sustainability. This study also shows that Chungcheongnam-do has the highest SI value for rice production due to low environmental loading and abundant natural energy during rice cultivation. These results of rice emergy flows and sustainability assessments could provide a way of sustainable rice cultivation with decrease of environmental loading from fertilizer.

The Dilemma of Language in Education Policies in Ghana and Tanzania

  • Dzahene-Quarshie, Josephine;Moshi, Lioba
    • Cross-Cultural Studies
    • /
    • v.36
    • /
    • pp.149-173
    • /
    • 2014
  • This paper examines language policies of Ghana and Tanzania (former British Colonies) since independence. The view that language use in education is a problem for African countries is evident in the ever changing language in education policies in many African countries. Because of the inevitable multilingual situation in many African countries, there are unavoidable challenges in their quest to adopt a language policy that works for the entire country since it is not practical to adopt all the languages spoken in the country as Media of Instruction. Ghana is not immune to this challenge and has fallen victim to this tendency to change the language in education policy from time to time in an attempt to adopt a satisfactory policy which would yield the intended results. Tanzania, however, is one of the few African countries that have found a sustainable language in education policy since independence. Nonetheless, it has its fair share of challenges as a consequence of the perceived competition between Kiswahili and English as official languages. The paper discusses the challenges that both Ghana and Tanzania face against the background of colonization. The paper also offers a discussion on possible future perspectives for the two countries.

Smart irrigation technique for agricultural water efficiency against climate change (기후변화 대응 물 효율성 증대를 위한 스마트 관개기술 연구)

  • Kim, Minyoung;Jeon, Jonggil;Kim, Youngjin;Choi, Yonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.198-198
    • /
    • 2017
  • Climate change causes unpredictable and erratic climatic patterns which affects crop production in agriculture and threatens public health. To cope with the challenges of climate change, sustainable and sound growth environment for crop production should be secured. Recent attention has been given to the development of smart irrigation system using sensors and wireless network as a solution to achieve water conservation as well as improvement in crop yield and quality with less water and labor. This study developed the smart irrigation technique for farmlands by monitoring the soil moisture contents and real-time climate condition for decision-making support. Central to this design is micro-controller which monitors the farm condition and controls the distribution of water on the farm. In addition, a series of laboratory studies were conducted to determine the optimal irrigation pattern, one time versus plug time. This smart technique allows farmers to reduce water use, improve the efficiency of irrigation systems, produce more yields and better quality of crops, reduce fertilizer and pesticide application, improve crop uniformity, and prevent soil erosion which eventually reduce the nonpoint source pollution discharge into aquatic-environment.

  • PDF

Current Status and Future Prospects of White Root Rot Management in Pear Orchards: A Review

  • Sawant, Shailesh S.;Choi, Eu Ddeum;Song, Janghoon;Seo, Ho-Jin
    • Research in Plant Disease
    • /
    • v.27 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • The current social demand for organic, sustainable, and eco-friendly approaches for farming, while ensuring the health and productivity of crops is increasing rapidly. Biocontrol agents are applied to crops to ensure biological control of plant pathogens. Research on the biological control of white root rot disease caused by a soil-borne pathogen, Rosellinia necatrix, is limited in pears compared to that in apple and avocado. This pathogenic fungus has an extensive host range, and symptoms of this disease include rotting of roots, yellowing and falling of leaves, wilting, and finally tree death. The severity of the disease caused by R. necatrix, makes it the most harmful fungal pathogen infecting the economical fruit tree species, such as pears, and is one of the main limiting factors in pear farming, with devastating effects on plant health and yield. In addition to agronomic and cultural practices, growers use chemical treatments to control the disease. However, rising public concern about environmental pollution and harmful effects of chemicals in humans and animals has facilitated the search for novel and environmentally friendly disease control methods. This review will briefly summarize the current status of biocontrol agents, ecofriendly methods, and possible approaches to control disease in pear orchards.

Pyrolysis of Lignin Obtained from Cinnamyl Alcohol Dehydrogenase (CAD) Downregulated Arabidopsis Thaliana

  • Kim, Kwang Ho;Kim, Jae-Young;Kim, Chang Soo;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.442-450
    • /
    • 2019
  • Despite its potential as a renewable source for fuels and chemicals, lignin valorization still faces technical challenges in many aspects. Overcoming such challenges associated with the chemical recalcitrance of lignin can provide many opportunities to innovate existing and emerging biorefineries. In this work, we leveraged a biomass genetic engineering technology to produce phenolic aldehyde-rich lignin structure via downregulation of cinnamyl alcohol dehydrogenase (CAD). The structurally altered lignin obtained from the Arabidopsis thaliana CAD mutant was pyrolyzed to understand the effect of structural alteration on thermal behavior of lignin. The pyrolysis was conducted at 400 and $500^{\circ}C$ using an analytical pyrolyzer connected with GC/MS and the products were systematically analyzed. The results indicate that aldehyde-rich lignin undergoes fragmentation reaction during pyrolysis forming a considerable amount of C6 units. Also, it was speculated that highly reactive phenolic aldehydes facilitate secondary repolymerization reaction as described by the lower yield of overall phenolic compounds compared to wild type (WT) lignin. Quantum mechanical calculation clearly shows the higher electrophilicity of transgenic lignin than that of WT, which could promote both fragmentation and recondensation reactions. This work provides mechanistic insights toward biomass genetic engineering and its application to the pyrolysis allowing to establish sustainable biorefinery in the future.

Phytobiome as a Potential Factor in Nitrogen-Induced Susceptibility to the Rice Blast Disease

  • Jeon, Junhyun
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.103-107
    • /
    • 2019
  • Roles of nutrients in controlling plant diseases have been documented for a long time. Among the nutrients having impact on susceptibility/resistance to crop diseases, nitrogen is one of the most important nutrients for plant growth and development. In rice plants, excess nitrogen via fertilization in agricultural systems is known to increase susceptibility to the rice blast disease. Mechanisms underlying such phenomenon, despite its implication in yield and sustainable agriculture, have not been fully elucidated yet. A few research efforts attempted to link nitrogen-induced susceptibility to concomitant changes in rice plant and rice blast fungus in response to excess nitrogen. However, recent studies focusing on phytobiome are offering new insights into effects of nitrogen on interaction between plants and pathogens. In this review, I will first briefly describe importance of nitrogen as a key nutrient for plants and what changes excess nitrogen can bring about in rice and the fungal pathogen. Next, I will highlight some of the recent phytobiome studies relevant to nitrogen utilization and immunity of plants. Finally, I propose the hypothesis that changes in phytobiome upon excessive nitrogen fertilization contribute to nitrogen-induced susceptibility, and discuss empirical evidences that are needed to support the hypothesis.

Analysis of Genes Activated by Salt and ER Stress in bZIP17 and bZIP28 Gene Transgenic Potato Plants

  • Kim, Kyung Hwa;Choi, Man Soo;Chun, Jae Buhm;Jin, Mi Na;Jeong, Nam Hee;Kim, Dool Yi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2018.10a
    • /
    • pp.179-179
    • /
    • 2018
  • Potato (Solanum tubersosum L.) is susceptible to various environmental stresses such as salt, high temperature, and drought. Especially, potato tuber growth is greatly affected by drought that causes not only yield reduction but also loss of tuber quality. Since unpredictable global weather changes cause more severe and frequent water limiting conditions, improvement of potato drought tolerance can minimize such adverse effects under drought and can impact on sustainable potato production. Genetic engineering can be utilized to improve potato drought tolerance, but such approaches using endogenous potato genes have rarely been applied. We were obtained AtbZIP28 gene transgenic potato plants. It is identified transcript levels at various stress conditions, polyethylene glycol (PEG), NaCl, (ABA). Also, For identification to regulate ER stress response genes in AtbZIP28 gene transgenic potato plant, we screened seven potato genes from RNA-seq analysis under TM treatment. Five and two genes were up- and down-regulated by TM, respectively. Their expression patterns were re-examined at stress agents known to elicit TM, DTT, DMSO and salt stress.

  • PDF

Food Ethics Approach Improves the Effectiveness of Dietary Education (음식윤리 접근에 의한 식생활교육 효과 증진)

  • Kim, Sukshin;Choi, Eunjung;Lee, Mihye
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.4
    • /
    • pp.333-340
    • /
    • 2021
  • This study was performed to improve the effectiveness of dietary education using a food ethics approach. Dietary education is a way of practicing food ethics based on Korean culture. The core values of dietary education and the keywords related to food ethics can be combined into environment·life, health·wisdom, and consideration·happiness. Sustainable dietary life comprises the value system of dietary education based on core values. To reach the ultimate goal of food ethics-sustaining the survival of the human race, the coexistence of humans and nature, the coexistence of humans and humans, and the fulfillment of food requirements are needed. These needs yield certain core principles, including respect for life, environmental preservation, justice, the priority of consumers, dynamic equilibrium, and the priority of safety. The extended ethical matrix with six core principles and three interest groups can be used for an ethical analysis either qualitative or quantitative. It is believed that if food ethics are introduced into dietary education programs, the effectiveness of education can be improved.

Management Reference Points for Korea Chub Mackerel Scomber japonicus Stock (확률론적 연령구조모델을 이용한 한국 고등어(Scomber japonicus) 어획 강도)

  • Gim, Jinwoo;Hyun, Saang-Yoon;Lee, Jae Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.942-953
    • /
    • 2020
  • Achieving optimal sustainable yields (i.e., avoiding overfishing and maximizing fishery harvest at the same time) is one of the main objectives in fisheries management. Generally, management reference points (MRPs) such as fishing mortalities (Fmsy, F0.1, Fx%) have been suggested for the purpose. In this study, we intended to suggest MRPs for Korea chub mackerel Scomber japonicus stock, using a stochastic catch-at-age model (SCAA) and evaluate whether the current fishing intensity on the stock is appropriate. We used length frequency and catch-per-unit-effort data on the Korea chub mackerel stock collected from the large purse-seine fishery, and yields landed by all fisheries from years 2000 - 2019. We calculated yield per recruit and spawning potential ratio, and projected spawning stock biomass (SSB) under different fishing mortality, assuming annual recruitments were solely controlled by environmental effects (i.e., steepness of 1.0). Some of our major findings and suggestions were that the overfishing threshold would be F46%; i.e., the fishing mortality in the terminal year, 2019 was 0.257/year, which corresponded to F46%.

Aquifer Characterization Based on Geophysical Methods and Application Analysis on Past Cases (물리탐사에 기초한 대수층 특성화 및 적용 사례 분석)

  • Jeong, Juyeon;Kim, Bitnarae;Song, Seo Young;Joung, In Seok;Song, Sung-Ho;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.1-23
    • /
    • 2022
  • For its essential importance as a resource, sustainable development of groundwater has been major research interests for many decades. Conventional characterization of aquifer and groundwater has relied on borehole data from observation well. Although borehole data provide useful information on yield and flow of groundwater, it is often difficult and sometimes costly to estimate the spatial distribution of groundwater in entire aquifer. Geophysical probing is an alternative techique that provides such information due to its capability to image subsurface structures as well as to delineate spatial distribution of hydraulic parameters. This study presents various technical information about geophysical probing to estimate main characteristics of aquifer for groundwater exploitation. Subsequently, we analyzed representative cases, in which geophysical methods were applied to identify the location of the groundwater, classify freshwater and brine, derive hydraulic constants, and monitor groundwater.