Browse > Article
http://dx.doi.org/10.7857/JSGE.2022.27.2.001

Aquifer Characterization Based on Geophysical Methods and Application Analysis on Past Cases  

Jeong, Juyeon (Department of Energy and Mineral Resources Engineering, Sejong University)
Kim, Bitnarae (Department of Energy and Mineral Resources Engineering, Sejong University)
Song, Seo Young (Department of Energy and Mineral Resources Engineering, Sejong University)
Joung, In Seok (Department of Energy and Mineral Resources Engineering, Sejong University)
Song, Sung-Ho (Korea Rural Community Corporation)
Nam, Myung Jin (Department of Energy and Mineral Resources Engineering, Sejong University)
Publication Information
Journal of Soil and Groundwater Environment / v.27, no.2, 2022 , pp. 1-23 More about this Journal
Abstract
For its essential importance as a resource, sustainable development of groundwater has been major research interests for many decades. Conventional characterization of aquifer and groundwater has relied on borehole data from observation well. Although borehole data provide useful information on yield and flow of groundwater, it is often difficult and sometimes costly to estimate the spatial distribution of groundwater in entire aquifer. Geophysical probing is an alternative techique that provides such information due to its capability to image subsurface structures as well as to delineate spatial distribution of hydraulic parameters. This study presents various technical information about geophysical probing to estimate main characteristics of aquifer for groundwater exploitation. Subsequently, we analyzed representative cases, in which geophysical methods were applied to identify the location of the groundwater, classify freshwater and brine, derive hydraulic constants, and monitor groundwater.
Keywords
Aquifer characterization; Groundwater; Geophysical method; Hydraulic parameter;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A., 2008, Complex conductivity of water-saturated packs of glass beads. J. Colloid Interf. Sci., 321(1), 103-117.   DOI
2 Rai, S.N., Thiagarajan, S., Kumar, D., Dubey, K. M., Rai, P.K., Ramachandran, A., and Nithya, B., 2013, Electrical resistivity tomography for groundwater exploration in a granitic terrain in NGRI campus, Current Science, 105(10), 1410-1418.
3 Fitts, C.R., 2002, Groundwater science, Academic Press, San Diego, California.
4 Kim, H.S., 1997, Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method, J. Eng. Geol., 7(2), 139-149.
5 Kim, K.H., Yun, S.T., Kim, H.K., and Kim, J.W., 2015. Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches. J. Geochem. Explor., 148, 196-205.   DOI
6 Kumar, D., Rajesh, K., Mondal, S., Warsi, T., and Rangarajan, R., 2020, Groundwater exploration in limestone-shale-quartzite terrain through 2D electrical resistivity tomography in Tadipatri, Anantapur district, Andhra Pradesh, J. Earth Syst. Sci., 129(1), 1-16.   DOI
7 Lee, J.M., Ko, K.S., and Woo, N.C., 2020, Characterization of Groundwater Level and Water Quality by Classification of Aquifer Types in South Korea, Econ. and Environ. Geol., 53(5), 619-629.   DOI
8 Lee, J.Y., Yi, M.J., Yoo, Y.K., Ahn, K.H., Kim, G.B., and Won, J.H., 2007, A review of the national groundwater monitoring network in Korea, Hydrol. Process.: An International Journal, 21(7), 907-919.   DOI
9 Liu, H., Xie, X., Cui, J., Takahashi, K., and Sato, M., 2014, Groundwater level monitoring for hydraulic characterization of an unconfined aquifer by common mid-point measurements using GPR, J. Environ. Eng. Geophys., 19(4), 259-268.   DOI
10 MOE (Ministry of Environment) and K-water, 2019, National Groundwater Monitoring Network in Korea Annual Report 2019, ME and K-water, Daejeon, Korea, 829.
11 Weiss, P.T., LeFevre, G., and Gulliver, J.S., 2008, Contamination of soil and groundwater due to stormwater infiltration practices, a literature review.
12 Niwas, S., Tezkan, B., and Israil, M., 2011, Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany, Hydrogeol. J., 19(2), 307-315.   DOI
13 Vogelgesang, J.A., Holt, N., Schilling, K.E., Gannon, M., and Tassier-Surine, S., 2020, Using high-resolution electrical resistivity to estimate hydraulic conductivity and improve characterization of alluvial aquifers, J. Hydrol., 580, 123992.   DOI
14 Werner, A.D., Bakker, M., Post, V.E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T., and Barry, D.A., 2013, Seawater intrusion processes, investigation and management: recent advances and future challenges, Adv. in water res., 51, 3-26.   DOI
15 West, G.F., Macnae, J.C., and Nabighian, M.N., 1987, Electromagnetic methods in applied geophysics, Vol. 2. Applications.
16 Moghareh Abed, T., Eskandari Torbaghan, M., Hojjati, A., Rogers, C.D., and Chapman, D.N., 2020, Experimental investigation into the effects of cast-iron pipe corrosion on GPR detection performance in clay soils, J. Pipeline Syst. Eng. Pract., 11(4), 04020040.   DOI
17 Morgan, L.K., and Werner, A.D., 2015, A national inventory of seawater intrusion vulnerability for Australia, J. Hydrol. Reg. Stud., 4, 686-698.   DOI
18 Owen R.J., Gwavava O., and Gwaze P., 2005, Multi-electrode resistivity survey for groundwater exploration in the Harare greenstone belt, Zimbabwe, Hydrogeol. J., 14, 244-252.   DOI
19 Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R., and Nelson, P.H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophy, 43(3), 588-609.   DOI
20 Porsani, J.L., Elis, V.R., and Hiodo, F.Y., 2005, Geophysical investigations for the characterization of fractured rock aquifers in Itu, SE Brazil, J. Appl. Geophy., 57(2), 119-128.   DOI
21 Revil, A., Karaoulis, M., Johnson, T., and Kemna, A., 2012, Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology, Hydrogeol. J., 20(4), 617-658.   DOI
22 Chae, B.G., Lee, D.H, Kim, Hwang, S.H., Kee, W.Y., and Lee, S.G., 2001, Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings, J. Korea Geoenvironmental Soc., 2(1), 37-56.
23 Abd-Elaty, I., Abd-Elhamid, H.F., and Negm, A.M., 2018, Investigation of Saltwater Intrusion in Coastal Aquifers, Groundw. Nile Delta, 329-353.
24 Revil, A., Naudet, V., Nouzaret, J., and Pessel, M., 2003, Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications, Water. Res our. Res ., 39(5).
25 Reynolds, J.M., 2011, An introduction to applied and environmental geophysics, John Wiley & Sons.
26 Ritz, M., Descloitres, M., Robineau, B., and Courteaud, M., 1997, Audiomagnetotelluric prospecting for groundwater in the Baril coastal area, Piton de la Fournaise Volcano, Reunion Island, Geophy, 62(3), 758-762.   DOI
27 Buselli, G., Davis, G.B., Barber, C., Height, M.I., and Howard, S.H.D., 1992, The application of electromagnetic and electrical methods to groundwater problems in urban environments, Explor. Geophys., 23(4), 543-555.   DOI
28 Chambers, J., Meldrum, P., Gunn, D., Wilkinson, P., Merritt, A., Murphy, W., West, J., Kuras, O., Haslam, E., Hobbs, P., Pennington, C., and Munro, C., 2013, Geophysical-geotechnical sensor networks for landslide monitoring. In Landslide Science and Practice, Springer, Berlin, Heidelberg, 289-294.
29 Chandra, P.C., 2015, Groundwater geophysics in hard rock, CRC Press, Taylor & Francis Group, Leiden, The Netherlands.
30 Choi, S.H., Kim, H.S., and Kim, J.S., 2008, IP Characteristics of Sand and Silt for Investigating the Alluvium Aquifer, J. Eng. Geol., 18(4), 423-431.
31 Cole, K.S. and Cole, R.H., 1942, Dispersion and absorption in dielectrics II. Direct current characteristics, J. Chem. Phys., 10(2), 98-105.   DOI
32 de Menezes Travassos, J. and Menezes, P.D.T.L., 2004, GPR exploration for groundwater in a crystalline rock terrain, J. Appl. Geophy., 55(3-4), 239-248.   DOI
33 Schmugge, T.J., 1980, Effect of texture on microwave emission from soils: IEEE Transactions on Geoscience and Remote Sensing, GE-18(4), 353-361.   DOI
34 Comte, J.-C., and Banton, O., 2007, Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers, Geophys. Res. Lett., 34, L10402.   DOI
35 Custodio, E., 2010, Coastal aquifers of Europe: an overview, Hydrogeol. J., 18(1), 269-280.   DOI
36 Daily, W., Ramirez, A., Binley, A., and LeBrecque, D., 2004, Electrical resistance tomography, Leading Edge, 23(5), 438-442.   DOI
37 Davis, J.L. and ANNAN, A.P., 1989, Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1, Geophys. Prospect., 37(5), 531-551.   DOI
38 Deiana, R., Cassiani, G., Kemna, A., Villa, A., Bruno, V., and Bagliani, A., 2007, An experiment of non-invasive characterization of the vadose zone via water injection and cross-hole time-lapse geophysical monitoring, Near Surf. Geophys., 5(3), 183-194.   DOI
39 Doetsch, J., Ingeman-Nielsen, T., Christiansen, A. V., Fiandaca, G., Auken, E., and Elberling, B., 2015, Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution, Cold Reg. Sci. Technol., 119, 16-28.   DOI
40 Chung, I.-M., Kim, N.W. and Lee, J., 2007, Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed, J. Soil Groundw. Environ., 12(5), p.19-32.
41 Yao, L., Huo, Z., Feng, S., Mao, X., Kang, S., Chen, J., Xu, J., and Steenhuis, T.S., 2014, Evaluation of spatial interpolation methods for groundwater level in an arid inland oasis, northwest China, Environ. Earth. Sci., 71(4), 1911-1924.   DOI
42 Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Baali, F., and El Gayar, A., 2018, Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. EuroMediterr, J. Environ. Integr., 3(1), 1-15.   DOI
43 Zhang, J., Chen, K., Huang, H., Zhen, L., Ju, J., and Du, S., 2021, Discussion on monitoring and characterising group drilling pumping test within a massive thickness aquifer using the time-lapse transient electromagnetic method (TEM), B. Geofis. Teor. Appl., 62(1), 119-134.
44 Fitterman, D.V., 2014, Mapping saltwater intrusion in the Biscayne aquifer, Miami-Dade County, Florida using transient electromagnetic sounding, J. Environ. Eng. Geophys., 19(1), 33-43.   DOI
45 Griffiths, D.H. and Barker, R.D., 1993, Two-dimensional resistivity imaging and modelling in areas of complex geology, J. Appl. Geophy., 29(3-4), 211-226.   DOI
46 Hasan, M., Shang, Y., Akhter, G., and Jin, W., 2018, Geophysical assessment of groundwater potential: a case study from Mian Channu Area, Pakistan, Groundwater, 56(5), 783-796.   DOI
47 Hayley, K., Bentley, L.R., and Gharibi, M., 2009, Time-lapse electrical resistivity monitoring of salt-affected soil and groundwater, Water. Resour. Res., 45(7).
48 Hyun, Y., 2014, Preliminary Study on Environmental Values of Groundwater Resources in Korea, Korea Environment Institute.
49 Jung, K., Lee, T., Choi, B.G., and Hong, S., 2015, Rainwater harvesting system for contiunous water supply to the regions with high seasonal rainfall variations, Water. Resour. Res., 29(3), 961-972.
50 Bear, J., Cheng, A.H.D., Sorek, S., Ouazar, D., and Herrera, I. (Eds.)., 1999, Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices, Kluwer Academic Publisher, Dordrecht, Boston, London.
51 Buddemeier, R.W., Sawin, R.S., Whittemore, D.O., and Young, D.P., 1995, Salt Contamination of Ground Water in South Central Kansas. Kansas Geological Survey, Public Information Circular# 2.
52 Cardarelli, E., and Di Filippo, G., 2009, Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: a case study in Rho (Milan-Italy), Waste. Manag. Res., 27(6), 595-602.   DOI
53 Nadler, A. and Frenkel, H., 1980, Determination of soil solution electrical conductivity from bulk soil electrical conductivity measurements by the four-electrode method, Soil Sci. Soc. Am. J., 44(6), 1216-1221.   DOI
54 Won, K.S., Chung, S.Y., Lee, C.S., and Jeong, J.H., 2015, Replacement of saline water through injecting fresh water into a confined saline aquifer at the nakdong river delta area, J. Eng. Geol., 25(2), 215-225.   DOI
55 Niwas, S., Tezkan, B., and Israil, M., 2011, Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany, Hydrogeol. J. 19(2), 307-315.   DOI
56 Kadri, M. and Nawawi, M.N.M., 2010, Groundwater exploration using 2D resistivity imaging in Pagoh, Johor, Malaysia, In AIP Conference Proceedings, American Institute of Physics.
57 Fukue, M., Minato, T., Horibe, H., and Taya, N., 1999, The micro-structures of clay given by resistivity measurements, Eng. Geol., 54(1-2), 43-53.   DOI
58 Lee, T.J., Park, N.Y., Choo, S.Y., Lee, J.H., and Koh, S.Y., 2003, Estimation of Two-dimensional Distribution of Coefficient of Permeability from Electrical Logging and AMT Data in Yangsan Area. Geophy. and Geophy. Explor., 6(2), 64-70.
59 Chung, I.M., Kim, J., Lee, J., and Chang, S.W., 2015, Status of exploitable groundwater estimations in Korea, J. Eng. Geol., 25(3), 403-412.   DOI
60 Cueto, M., Olona, J., Fernandez-Viejo, G., Pando, L., and Lopez-Fernandez, C., 2018, Karst-induced sinkhole detection using an integrated geophysical survey: a case study along the Riyadh Metro Line 3 (Saudi Arabia), Near Surf. Geophys., 16(3), 270-281.   DOI
61 Cho, D.H. and Jee, S.K., 2000, A Pole-pole Electrical Survey for Groundwater, Geophys. and Geophys. Explor., 3(3), 88-93.
62 Dawoud, M.A. and Raouf, A.R.A., 2009, Groundwater exploration and assessment in rural communities of Yobe State, Northern Nigeria, Water Resour. Manag., 23(3), 581-601.   DOI
63 Deline, B., Harris, R., and Tefend, K., 2015, Laboratory Manual for Introductory Geology, University System of Georgia, University Press of North Georgia.
64 Sonkamble, S., Satishkumar, V., Amarender, B., and Sethurama, S., 2014, Combined ground-penetrating radar (GPR) and electrical resistivity applications exploring groundwater potential zones in granitic terrain, Arab. J. Geosci., 7(8), 3109-3117.   DOI
65 Ahmed, A.S., Revil, A., Boleve, A., Steck, B., Vergniault, C., Courivaud, J.R., Jougnot, D., and Abbas, M., 2020, Determination of the permeability of seepage flow paths in dams from selfpotential measurements, Eng. Geol., 268, 105514.
66 Ahmed, S., de Marsily, G., and Talbot, A., 1988, Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity, Groundwater, 26(1), 78-86.   DOI
67 Ahn, S.S., and Park, D.I., 2015, Groundwater Characterization according to Hydraulic Conductivity Input Method, J. Environ. Sci. Int., 24(7), 939-946.   DOI
68 Lesmes, D.P., Decker, S.M., and Roy, D.C., 2002, A multiscale radar-stratigraphic analysis of fluvial aquifer heterogeneity, Geophy., 67(5), 1452-1464.   DOI
69 Levchuk, S., Kashparov, V., Maloshtan, I., Yoschenko, V., and Van Meir, N., 2012, Migration of transuranic elements in groundwater from the near-surface radioactive waste site, Appl. Geochen., 27(7), 1339-1347.   DOI
70 Chae, G.T., Kim, K., Yun, S.T., Kim, K.H., Kim, S.O., Choi, B.Y., Kim, H.S., and Rhee, C.W., 2004, Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility, Chemosphere, 55(3), 369-378.   DOI
71 Aizebeokhai, A.P. and Oyeyemi, K.D., 2014, The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging, J. Appl. Geophy., 111, 364-376.   DOI
72 Soupios, P.M., Kouli, M., Vallianatos, F., Vafidis, A., and Stavroulakis, G., 2007, Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete-Greece), J. Hydrol. 338(1-2), 122-131.   DOI
73 Steyl, G. and Dennis, I, 2010, Review of coastal-area aquifers in Africa, Hydrogeol. J., 18(1), 217-225.   DOI
74 Straface, S., Rizzo, E., and Chidichimo, F., 2010, Estimation of hydraulic conductivity and water table map in a large-scale laboratory model by means of the self-potential method, J. Geophys. Res. Solid. Earth, 115(B6).
75 Thiagarajan, S., Rai, S.N., Kumar, D., and Manglik, A., 2018, Delineation of groundwater resources using electrical resistivity tomography, Arab. J. Geosci., 11(9), 1-16.   DOI
76 Todd, D.K. and Mays, L.W., 2004, Groundwater hydrology, John Wiley & Sons.
77 Tronicke, J., Blindow, N., Gross, R., and Lange, M. A., 1999, Joint application of surface electrical resistivity-and GPR-measurements for groundwater exploration on the island of Spiekeroog-northern Germany, J. Hydrol., 223(1-2), 44-53.   DOI
78 Uhlemann, S., Kuras, O., Richards, L.A., Naden, E., and Polya, D.A., 2017, Electrical Resistivity Tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia, J. Asian Earth Sci., 147, 402-414.   DOI
79 Madun, A., Tajudin, S.A.A., Sahdan, M.Z., Dan, M.F.M., and Talib, M.K.A., 2018, Electrical resistivity and induced polarization techniques for groundwater exploration, Int. J. Integr. Eng., 10(8).
80 Lee, J.M., Park, J.H., Chung, E. and Woo, N.C., 2018, Assessment of Groundwater Drought in the Mangyeong River Basin, Korea, Sustain., 10(3), 831.   DOI
81 Massoud, U., Santos, F., Khalil, M.A., Taha, A. and Abbas, A.M., 2010, Estimation of aquifer hydraulic parameters from surface geophysical measurements: a case study of the Upper Cretaceous aquifer, central Sinai, Egypt, Hydrogeol. J., 18, 699-710.   DOI
82 Min, J.H., Yun, S.T., Kim, K., Kim, H.S., and Kim, D.J., 2003, Geologic controls on the chemical behaviour of nitrate in riverside alluvial aquifers, Korea, Hydrol. Process., 17(6), 1197-1211.   DOI
83 Ministry of Environment, 2020, Groundwater business performance guideline, file:///C:/Users/juju/Downloads/%ED%99%98%EA%B2%BD%EB%B6%80_%EC%A7%80%ED%95%98%EC%88%98%EC%97%85%EB%AC%B4%EC%88%98%ED%96%89%20%EC%A7%80%EC%B9%A8%20(1).pdf
84 Mohamaden, M.I. and Ehab, D., 2017, Application of electrical resistivity for groundwater exploration in Wadi Rahaba, Shalateen, Egypt, J. Astron. Geophy., 6(1), 201-209.
85 Dickson, N.E.M., Comte, J.C., McKinley, J., and Ofterdinger, U., 2014, Coupling ground and airborne geophysical data with upscaling techniques for regional groundwater modeling of heterogeneous aquifers: Case study of a sedimentary aquifer intruded by volcanic dykes in Northern Ireland, Water. Resour. Res., 50(10), 7984-8001.   DOI
86 Draskovits, P., Hobot, J., Vero, L., and Smith, B., 1990, Induced polarization surveys applied to evaluation of groundwater resources, Pannonian Basin, Hungary. USA. Invest. Geophy., 4, 379-396.
87 El-Kaliouby, H., and Abdalla, O., 2015. Application of time-domain electromagnetic method in mapping saltwater intrusion of a coastal alluvial aquifer, North Oman. J. Appl. Geophy., 115, 59-64.   DOI
88 Fagerlund, F. and Heinson, G., 2003, Detecting subsurface groundwater flow in fractured rock using self-potential (SP) methods, Environ. Geol., 43(7), 782-794.   DOI
89 Frind, E.O. and Molson, J.W., 2018, Issues and options in the delineation of well capture zones under uncertainty, Ground Water, 56(3), 366-376.   DOI
90 Gloaguen, E., Chouteau, M., Marcotte, D., and Chapuis, R., 2001, Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data, J. Appl. Geophy., 47(2), 135-152.   DOI
91 Fallon, G.N., Fullagar, P.K., and Sheard, S.N., 1997, Application of geophysics in metalliferous mines, Aust. J. Earth Sci., 44(4), 391-409.   DOI
92 Akhter, G., Ge, Y., Hasan, M., and Shang, Y., 2022, Estimation of Hydrogeological Parameters by Using Pumping, Laboratory Data, Surface Resistivity and Thiessen Technique in Lower Bari Doab (Indus Basin), Pakistan, Appl. Sci., 12(6), 3055.   DOI
93 Atekwana, E.A. and Atekwana, E.A., 2010, Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review, Surv. Geophys., 31(2), 247-283.   DOI
94 Gopinath, S., Srinivasamoorthy, K., Saravanan, K., and Prakash, R., 2019, Discriminating groundwater salinization processes in coastal aquifers of southeastern India: geophysical, hydrogeochemical and numerical modeling approach. Environment, Development and Sustainability, 21(5), 2443-2458.   DOI
95 Monego, M., Cassiani, G., Deiana, R., Putti, M., Passadore, G., and Altissimo, L., 2010, A tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface electrical resistivity tomography, Geophy, 75(4), WA61-WA73.   DOI
96 Batte, A.G., Barifaijo, E., Kiberu, J.M., Kawule, W., Muwanga, A., Owor, M., and Kisekulo, J., 2010, Correlation of geoelectric data with aquifer parameters to delineate the groundwater potential of hard rock terrain in Central Uganda, Pure. Appl. Geophys., 167(12), 1549-1559.   DOI
97 Bhatt, K., 1993, Uncertainty in wellhead protection area delineation due to uncertainty in aquifer parameter values, J. Hydrol., 149(1-4), 1-8.   DOI
98 Binley, A., Keery, J., Slater, L., Barrash, W., and Cardiff, M., 2016, The hydrogeologic information in cross-borehole complex conductivity data from an unconsolidated conglomeratic sedimentary aquifer, Geophy., 81(6), E409-E421.   DOI
99 Gokturkler, G., Balkaya, C., Erhan, Z., and Yurdakul, A., 2008, Investigation of a shallow alluvial aquifer using geoelectrical methods: a case from Turkey, Environ. Geol., 54(6), 1283-1290.   DOI
100 Graham, M.T., MacAllister, D.J., Vinogradov, J., Jackson, M.D., and Butler, A.P., 2018, Self-potential as a predictor of seawater intrusion in coastal groundwater boreholes, Water. Resour. Res., 54(9), 6055-6071.   DOI
101 Guevara, H.J.P., Barrientos, J.H., Rodriguez, O.D., Guevara, V.M.P., Cardenas, O.L., and Torres, M.L.D.G., 2017, Estimation of Hydrological Parameters from Geoelectrical Measurements. In Electrical Resistivity and Conductivity, Intech.
102 Gunnink, J.L., Pham, H.V., Oude Essink, G.H., and Bierkens, M.F., 2021, The three-dimensional groundwater salinity distribution and fresh groundwater volumes in the Mekong Delta, Vietnam, inferred from geostatistical analyses, Earth Syst. Sci. Data, 13(7), 3297-3319.   DOI
103 Neal, A., 2004, Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Sci. Rev., 66(3-4), 261-330.   DOI
104 Water Souce: groundwater, https://www.canada.ca/en/environment-climate-change/services/water-overview/sources/groundwater.html#sub1, [accessed 22.03.17]
105 Swileam, G.S., Shahin, R.R., Nasr, H.M., and Essa, K.S., 2019, Spatial variability assessment of Nile alluvial soils using electrical resistivity technique, Eurasian J. Soil Sci., 8(2) 110-117.
106 Hubbard, S.S., Chen, J., Peterson, J., Majer, E.L., Williams, K.H., Swift, D.J., Mailloux, B., and Rubin, Y., 2001, Hydrogeological characterization of the South Oyster Bacterial Transport Site using geophysical data, Water. Resour. Res., 37(10), 2431-2456.   DOI
107 Jeong, J., Park, E., Han, W.S., Kim, K.Y., Oh, J., Ha, K., Yoon, H., and Yun, S.T., 2017, A method of estimating sequential average unsaturated zone travel times from precipitation and water table level time series data, J. Hydrol., 554, 570-581.   DOI
108 Nakashima, Y., Zhou, H., and Sato, M., 2001, Estimation of groundwater level by GPR in an area with multiple ambiguous reflections, J. Appl. Geophy., 47(3-4), 241-249.   DOI
109 Van Dam, J.C., 1976, Possibilities and limitations of the resistivity method of geoelectrical prospecting in the solution of geohydrological problems, Geoexploration, 14(3-4), 179-193.   DOI
110 Vozoff, K., 1972, The magnetotelluric method in the exploration of sedimentary basins, Geophy, 37(1), 98-141.   DOI
111 Olorunfemi, M.O. and Fasuyi, S.A., 1993, Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State), J. Afr. Earth Sci. (Middle East), 16(3), 309-317.   DOI
112 Panthulu, T.V., Krishnaiah, C., and Shirke, J.M., 2001, Detection of seepage paths in earth dams using self-potential and electrical resistivity methods, Eng. Geol., 59(3-4), 281-295.   DOI
113 Slater, L., Ntarlagiannis, D., and Wishart, D., 2006, On the relationship between induced polarization and surface area in metalsand and clay-sand mixtures, Geophy, 71(2), A1-A5.   DOI
114 Song, Z., Zhou, Q.Y., Lu, D.B., and Xue, S., 2022, Application of Electrical Resistivity Tomography for Investigating the Internal Structure and Estimating the Hydraulic Conductivity of In Situ Single Fractures, Pure. Appl. Geophys., 1-21.
115 Song, S.H., Yong, H.H., Kim, J.H., Song, S.Y, and Chung, H.J., 2002, Hydrogeologic structure derived from electrical and CSAMT surveys in the Chojung area, Geophys. and Geophys. Explor., 5(2), 118-125.
116 Song, S.H. and Yong, H., 2003. Application of SP monitoring to the analysis of anisotropy of aquifer, Econ. Environ. Geol., 36(1), 49-58.
117 Song, S.Y. and Nam, M.J., 2018, A Technical Review on Principles and Practices of Self-potential Method Based on Streaming Potential, Geophys. and Geophys. Explor., 21(4), 231-243.   DOI
118 Wake County Groundwater Assessment: Home, https://www2.usgs.gov/water/southatlantic/nc/projects/wake-countygroundwater/study.php, [accessed 22.03.17]
119 Watlet, A., Kaufmann, O., Triantafyllou, A., Poulain, A., Chambers, J.E., Meldrum, P.I., Wilkinson, P.B., Hallet, V., Quinif, Y., Ruymbeke, M.V., and Camp, M.V., 2018, Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring, Hydrol. Earth. Syst. Sci., 22(2), 1563-1592.   DOI
120 Waxman, M.H. and Smits, L.J.M., 1968, Electrical conductivities in oil-bearing shaly sands, Soc. Petrol. Eng. J., 8(02), 107-122.   DOI
121 Weller, A., Slater, L., Binley, A., Nordsiek, S., and Xu, S., 2015, Permeability prediction based on induced polarization: Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range, Geophy, 80(2), D161-D173.   DOI
122 Zhu, L., Gong, H., Chen, Y., Li, X., Chang, X., and Cui, Y., 2016, Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data, Sci. Rep., 6(1), 1-8.   DOI
123 Hamm, S.Y., Cheong, J.Y., Jang, S., Jung, C.Y., and Kim, B.S., 2005, Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island, Korea, J. Hydrol., 310(1-4), 111-121.   DOI
124 Archie, G.E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans., 146(01), 54-62.
125 Won, B., Shin, J., Hwang, S.H., and Hamm, S.Y., 2013, An Electrical Resistivity Survey for the Characterization of Alluvial Layers at Groundwater Artificial Recharge Sites, Geophys. and Geophys. Explor., 16(3), 154-162.   DOI
126 Yu, H., Kim, B., Song, S.Y., Cho, S.O., Caesary, D., and Nam, M.J., 2019, Change in Physical Properties depending on Contaminants and Introduction to Case Studies of Geophysical Surveys Applied to Contaminant Detection, Geophys. and Geophys. Explor., 22(3), 132-148.   DOI
127 Busato, L., Boaga, J., Perri, M.T., Majone, B., Bellin, A., and Cassiani, G., 2019, Hydrogeophysical characterization and monitoring of the hyporheic and riparian zones: The Vermigliana Creek case study, Sci. Total. Environ., 648, 1105-1120.   DOI
128 Castelluccio, M., Agrahari, S., De Simone, G., Pompilj, F., Lucchetti, C., Sengupta, D., Galli, G., Friello, P., Curatolo, P., Giorgi, R., and Tuccimei, P., 2018, Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India, Environ. Sci. Pollut. Res., 25(13), 12515-12527.   DOI
129 Chakma, A., Bhowmik, T., Mallik, S., and Mishra, U., 2022, Application of GIS and Geostatistical Interpolation Method for Groundwater Mapping. In Advanced Modelling and Innovations in Water Resources Engineering, Springer, Singapore.
130 Romanak, K.D., Smyth, R.C., Yang, C., Hovorka, S.D., Rearick, M., and Lu, J., 2012, Sensitivity of groundwater systems to CO2: Application of a site-specific analysis of carbonate monitoring parameters at the SACROC CO2-enhanced oil field, Int. J. Greenh. Gas Con., 6, 142-152.   DOI
131 Alfarrah, N. and Walraevens, K., 2018, Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions, Water, 10(2), 143.   DOI
132 Raiche, A.P., Jupp, D.L.B., Rutter, H., and Vozoff, K., 1985, The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures, Geophysics, 50(10), 1618-1627.   DOI
133 Gonzalez, J.A.M., Comte, J.C., Legchenko, A., Ofterdinger, U., and Healy, D., 2021, Quantification of groundwater storage heterogeneity in weathered/fractured basement rock aquifers using electrical resistivity tomography: Sensitivity and uncertainty associated with petrophysical modelling, J. Hydrol., 593, 125637.   DOI
134 Saad, R., Nawawi, M.N.M., and Mohamad, E.T., 2012, Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT), J. Geotech. Geoenviron. Eng., 17, 369-376.
135 Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., and Richard, G., 2005, Electrical resistivity survey in soil science: a review, Soil Tillage Res., 83(2), 173-193.   DOI
136 Sattar, G.S., Keramat, M., and Shahid, S., 2016, Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh, Appl. Water Sci., 6(1), 35-45.   DOI
137 Shainberg, I., Rhoades, J.D., and Prather, R.J., 1980, Effect of exchangeable sodium percentage, cation exchange capacity, and soil solution concentration on soil electrical conductivity, Soil Sci. Soc. Am. J., 44(3), 469-473.   DOI
138 Borner, F.D., Schopper, J.R., and Weller, A., 1996, Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements1, Geophys. Prospect., 44(4), 583-601.   DOI
139 Yu, X.Q., Zhao, Y.J., Wang, M.X., Liu, D., Wang, W.T., and Wang, X.Z., 2014, Combination of audio magnetotelluric and nuclear magnetic resonance used to aquifer division, J. Jilin University (Earth Science Edition), 44(1), 350-358.
140 Naudet, V., Revil, A., Bottero, J. Y., and Begassat, P., 2003, Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater, Geophys. Res. Lett., 30(21).
141 Sharma, S.P., and Baranwal, V.C., 2005, Delineation of groundwater-bearing fracture zones in a hard rock area integrating very low frequency electromagnetic and resistivity data, J. Appl. Geophy., 57(2), 155-166.   DOI
142 Bai, L., Huo, Z., Zeng, Z., Liu, H., Tan, J., and Wang, T., 2021, Groundwater flow monitoring using time-lapse electrical resistivity and Self Potential data, J. Appl. Geophy., 193, 104411.   DOI
143 Barlow, P.M. and Reichard, E.G., 2010, Saltwater intrusion in coastal regions of North America, Hydrogeol. J., 18(1), 247-260.   DOI
144 Batu, V., 1998, Aquifer Hydraulics: A Comprehensive Guide To Hydrogeologic Data Analysis, John Wiley & Sons, New York.
145 bin Azhar, A.S., Latiff, A.H. A., Lim, L.H., and Godeke, S.H., 2019, Groundwater investigation of a coastal aquifer in Brunei Darussalam using seismic refraction, Environ. Earth. Sci., 78(220).
146 Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., and Slater, L.D., 2015, The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water. Resour. Res., 51(6), 3837-3866.   DOI
147 Bocanegra, E., Da Silva, G.C., Custodio, E., Manzano, M., and Montenegro, S., 2010, State of knowledge of coastal aquifer management in South America, Hydrogeol. J., 18(1), 261-267.   DOI
148 Briggs, M.A., Lautz, L.K., and McKenzie, J.M., 2012, A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams, Hydrol. Process., 26(9), 1277-1290.   DOI
149 Bodin, J., Porel, G., Nauleau, B., and Paquet, D., 2021, Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data, Hydrol. Earth Syst. Sci. Discuss., 1-22.
150 Kelly, W.E. and Mares, S. (Eds.), 1993, Applied geophysics in hydrogeological and engineering practice. Elsevier.
151 Kim, J.W., 2013, Characteristics of water level change and hydrogeochemistry of groundwater from national groundwater monitoring network, Korea: geostatistical interpretation and the implications for groundwater management. Ph.D. thesis in Korea University, 173.
152 Lee, C.S., Kim, H.J., Kong, Y.S., Lee, J.M., and Chang, T.W., 2001, Investigation of fault in the Kyungju Kaekok-ri area by 2-D Electrical Resistivity Survey, Geophys. and Geophys. Explor., 4(4), 124-132.
153 Lee, J.Y., 2017, Lessons from three groundwater disputes in Korea: Lack of comprehensive and integrated investigation, Int. J. Water, 11(1), 59-72.   DOI
154 Lee, J.Y. and Kwon, K., 2015, Groundwater resources in Gangwon Province: Tasks and perspectives responding to droughts, J. Geol. Soc. Korea, 51(6), 585-595.   DOI
155 Shiklomanov, I.A., 1993, World freshwater resources. Water in crisis: a guide to the world's fresh water resources, Clim. Change, 45, 379-382.   DOI
156 Rizzo, E., Suski, B., Revil, A., Straface, S., and Troisi, S., 2004, Self-potential signals associated with pumping tests experiments, J. Geophys. Res. Solid. Earth, 109(B10).
157 Shin, J.H. and Byun, J.M., 2010, Fresh water injection test in a fractured bedrock aquifer for the mitigation of seawater intrusion, Econ. and Environ. Geol., 43(4), 371-379.
158 Shi, L. and Jiao, J.J., 2014, Seawater intrusion and coastal aquifer management in China: A review, Environ. Earth. Sci., 72(8), 2811-2819.   DOI
159 Singh, U., Sharma, P.K., and Ojha, C.S.P., 2019, Groundwater investigation using ground magnetic resonance and resistivity meter, ISH J. Hydraul. Eng., 27(1), 401-410.
160 Sinha, R., Israil, M., and Singhal, D.C., 2009, A hydrogeophysical model of the relationship between geoelectric and hydraulic parameters of anisotropic aquifers, Hydrogeol. J., 17(495).
161 Slater, L.D. and Sandberg, S.K., 2000, Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients, Geophy, 65(2), 408-420.   DOI
162 Slater, L. and Binley, A., 2021, Advancing hydrological process understanding from long-term resistivity monitoring systems, WIREs. Water., 8(3), e1513.
163 Slater, L. and Lesmes, D.P., 2002, Electrical-hydraulic relationships observed for unconsolidated sediments, Water. Resour. Res., 38(10), 31-1 - 31-13.   DOI
164 Kim, B., Nam, M.J., Jang, H., Jang, H., Son, J. S., and Kim, H.J., 2017, The Principles and Practice of Induced Polarization Method, Geophys. and Geophys. Explor., 20(2), 100-113.   DOI
165 Dai, Z., Keating, E., Gable, C., Levitt, D., Heikoop, J., and Simmons, A., 2010, Stepwise inversion of a groundwater flow model with multi-scale observation data, Hydrogeol J, 18(3), 607-624.   DOI
166 Park, K.G., Shin, J.H., Hwang, S.H., and Park, I.H, 2007, Fresh water injection test to mitigate seawater intrusion and geophysical monitoring in coastal area, Geophy. and Geophy. Explor., 10(4), 353-360.
167 Etete, B.I., Noiki, F.R., and Aizebeokhai, A.P., 2017, Estimation of hydraulic parameters from vertical electrical resistivity sounding, J. Inform. Math. Sci., 9(2), 285-296.
168 Hubbard, S.S., Rubin, Y., and Majer, E., 1997, Ground-penetrating-radar-assisted saturation and permeability estimation in bimodal systems, Water. Resour. Res., 33(5), 971-990.   DOI