• Title/Summary/Keyword: Sustainable Buildings

Search Result 337, Processing Time 0.026 seconds

A Fundamental Study on the Revision Direction of G-SEED for Green Remodeling Building (그린리모델링 건축물을 위한 녹색건축인증기준 개선방향에 대한 기초 연구)

  • Hyun, Eun-Mi;An, Kwang-Ho;Kim, Yong-Sik
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.51-58
    • /
    • 2017
  • Purpose: G-SEED's evaluation of existing buildings in Korea is an important point because the energy consumption and CO2 emissions of existing buildings are continuously increasing due to the aging of buildings over time. In 2016, the government has set up a 'Green Remodeling Certification Standard' in G-SEED in order to revitalize the green remodeling business of existing buildings. As a result, G-SEED is distinguished between buildings with green remodeling and buildings with general remodeling. Therefore, this study analyzed the system of the certification of the green remodeling building which is aimed at improving the performance of the building. Method: First, we analyze characteristics of the existing building certification standards of G-SEED(Korea), LEED(USA), and BREEAM(UK). Second, the evaluation criteria are based on the G-SEED Green Remodeling Certification, 2016, LEED for BD + C: New construction and major renovation v.4, BREEAM UK Non-Domestic Refurbishment and Fit-out 2014. Based on the analysis results, we propose the improvement direction of G-SEED Green Remodeling Certification Standard. Result: Existing buildings should be classified into 'existing building certification' for re-certification and 'green remodeling certification' accompanied by building performance improvement. In addition, building green buildings through performance improvement should include not only energy performance, but also creating a pleasant indoor environment and minimizing environmental impact. Finally, existing buildings have accumulated information on energy and resource use, and a performance improvement plan should be established based on this information.

A Study on User's awareness for Workable Environment Improvement of Public Building by Green Building Renovation - Focus on the 1st & 2nd Buildings of Jeju Special self-Governing Province - (그린빌딩화를 통한 청사 업무환경 개선을 위한 사용자 의식에 관한 연구 - 제주특별자치도 제 1, 2청사를 중심으로 -)

  • Oh, Chang-Hun;Kim, Tae-Il;Yang, Gun
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.162-171
    • /
    • 2010
  • In the field of architecture, the sustainable architectural concept, "green buildings," has been suggested as an alternative to solve the environmental problems; however, the concept has not yet been converted to awareness and development of related technology. The leading role of public sector has been socially and economically influential in the nation, hence green public buildings are significant to stimulate the spread of green buildings in the nation. This study is to draw an appropriate method of implementing the green building concept to the two main government office buildings of Jeju Special Self-Governing Province based on the plan to improve the work environment; it is also to provide long-term directions of implementing policies and reference for the public and private sector to utilize the green building concept. Its research methodology was the survey method. A total of 142 questionnaires were returned by government employees of the two buildings. It accounts for 20% of the total number of 711 workers of the buildings. According to the analysis of the returned questionnaire, the majority of the surveyed have a positive evaluurned toward the introduction of green buildings due to their expecturned for the possible i the buildingstheir work environment. In addition, they showed more interest in space planning with natural ventilation than automatic systems regarding applied methods for green buildings.

A Study on the Principles and Applications of Environmental Planning Towards Sustainable Science Parks : A Case Study for Developing Osong Bio-Health Science Technopolis (지속가능한 과학단지 환경계획의 원리와 적용 : 오송생명과학단지 개발사업을 사례로)

  • Kim, Do-Hyung
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.6 s.117
    • /
    • pp.682-700
    • /
    • 2006
  • This study aims to show a model of environmental planning towards sustainable science parks. For the purpose of this study, an analysis of the environment of green space at sustainable science parks as pertaining to environmental soundness, ecological stability and landscape aesthetics is applied as a case study to Osong Bio-Health Science Technopolis, a developmental promoted district. Considering the factors resulting from Habitat Agenda(II) and other preceding studies, this study derives fifteen elements of environmental planning for sustainable science parks. A questionnaire/survey was conducted with relation to these fifteen elements to officials who would be moved to Osong Bio-Health Science Technopolis. From this survey, it is shown that respondents have a strong awareness that for the sustainable environment of a science park, the park should preserve as much green space as possible, and that the park should be in harmony with the surrounding natural environment. The practice of forestation at sustainable science parks not only develops a healthy environment that promotes an image of green, but also promotes a stable ecological system. As such, this study suggests alternatives to environmental planning from the perspective of landscape ecology by assessing the project of developing Osong Bio-Health Science Technopolis. To continuously maintain landscape aesthetics, one needs to control the height of buildings, lest the forests should be hidden by the buildings.

Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model

  • Feng, Chengdong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Modelling incompressible, neutrally stratified, barotropic, horizontally homogeneous and steady-state atmospheric boundary layer (ABL) is an important aspect in computational wind engineering (CWE) applications. The ABL flow can be viewed as a balance of the horizontal pressure gradient force, the Coriolis force and the turbulent stress divergence. While much research has focused on the increase of the wind velocity with height, the Ekman layer effects, entailing veering - the change of the wind velocity direction with height, are far less concerned in wind engineering. In this paper, a modified k-ε model is introduced for the ABL simulation considering wind veering. The self-sustainable method is discussed in detail including the precursor simulation, main simulation and near-ground physical quantities adjustment. Comparisons are presented among the simulation results, field measurement values and the wind profiles used in the conventional wind tunnel test. The studies show that the modified k-ε model simulation results are consistent with field measurement values. The self-sustainable method is effective to maintain the ABL physical quantities in an empty domain. The wind profiles used in the conventional wind tunnel test have deficiencies in the prediction of upper-level winds. The studies in this paper support future practical super high-rise buildings design in CWE.

A Study on the Development of Design Guidelines (지속가능한 건축디자인을 위한 가이드라인에 관한 연구)

  • Kim, Byeong-Yoon;Jeon, Mi-Sook;Kim, Tae-Yeon;Leigh, Seung-Bok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.172-177
    • /
    • 2008
  • Considering the impact of buildings beyond their outline to our environment is the first step towards sustainable architecture. As we are still in the early days of sustainable design and its technology, we should make predictions about the design options. architecture activities in project is needed to predict more locally, nationally, globally not only present but future energy demand. The role of the architects who pioneered sustainable design is significantly important, that is to say architects should become a team leader rather than the sole form-giver and come up with the integrated idea related to each field such as the structural, mechanical and electrical engineers includes an energy specialist, in some cases, an independent Design Facilitator. In other words architects have to suggest goals and alternatives for human-being and biodiversity to sustainable life as well as vision of architecture.

  • PDF

A Pilot Project on the Integrated System Design for Developing the Sustainable Housing Model (친환경 공동주택 구현을 위한 저에너지 설비시스템 통합설계 방안 및 파일럿 프로젝트 계획)

  • Cho, Jin-Kyun;Sung, Jae-Ho;Shin, Seon-Joon;Hong, Min-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1049-1054
    • /
    • 2009
  • Sustainable housing design can contribute to dramatically reduced energy usage and can be applied to all new building projects. This paper explores the potential in Korea of applying available energy efficient building technologies. The objective was to determine the degree of energy reduction that can easily be achieved in new building design. The pilot project is providing some prototypes with display units which incorporate principles of sustainable design and performance utilizing the eco-design objectives. This building challenges ingrained preconceptions about system designs for four energy saving levels(40%, 60%, 80% and zero energy) and exposes barriers to low energy buildings posed by new standards and guidelines.

  • PDF

A Study on Examples of Eco-Friendly School Design - Focusing on School Facilities in USA, Japan and Korea - (학교건축의 친환경적 계획수법에 대한 사례연구 - 미국, 일본, 한국의 학교건축을 중심으로 -)

  • Lee, Ji-Young;Lee, Kyung-Sun
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • This study aims to identify differences and lessons in eco-school planning techniques and sustainable design methods by analyzing comparatively green building certification system and the cases of sustainable schools in US, Korea and Japan. As a result of the comparative analysis, green building certification system for school facilities, both domestic and international, is categorized into external environment, energy, materials and resources, and indoor environment. From the case study, it is common that roof garden and biotopes are installed for external environment, while energy saving, passive energy utilization methods for natural lighting and ventilation such as arrangement planning, courtyard, top-light, shading devices, solar panel and insulation by roof garden are most frequently used. Also, storm water uses, water saving equipment and sustainable materials are often introduced for resource savings. Concerns for indoor environment is frequently addressed by introducing natural light and ventilation in the buildings, which makes ultimately a comfortable space.

  • PDF

A Systematic Categorization of Interior Environmental Design Elements for Improving Sustainability - With Particular Reference to Unit Plan Design Elements of High-rise Apartment - (지속가능한 실내환경디자인 요소의 체계적 분류 - 초고층 아파트 단위 주공간의 디자인요소를 중심으로 -)

  • Lee Eun-Jung;Park Young-Ki
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.3 s.56
    • /
    • pp.48-55
    • /
    • 2006
  • A sustainable building must produce an interior environment that is safe, healthy, comfortable and supportive of human performance and well-being. The medical human comfort: performance and productivity cost of unhealthy environment may cause much cost for healing. Research that buildings with daylight, fresh air, eco-materials and sustainable interior design are consistently rated as more comfortable and occupants performance, satisfaction and health. This study is to categorize systematically interior environmental design elements for improving sustainability with a view to developing an evaluation model of super high-rise apartment unit plans. With a literature survey and design guide lines concerning sustainable design elements, three hierarchical categorization levels of human, environment, energy and resources systems that consists of upper, middle, low design elements have been proposed. A total of 6 items have been suggested for middle level of categorization and 24 items for lower level. Finally a total of 107 design elements concerning the 24 items and their relationahips have been revealed. The needs for a systematic approach to interior environmental design for sustainability have been discussed.

Efficiency Analysis of the HVAC system in the School Facilities Using the Geothermal Energy -Focused on the energy consumption- (지열을 이용한 학교시설의 냉·난방시스템 효율성분석 -에너지 소비량을 중심으로-)

  • Park, Dong-Soon;Lee, Jae-Rim
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.6 no.2
    • /
    • pp.25-52
    • /
    • 2007
  • This paper is focused on the economical efficiency of the geothermal heat pump system in school. As the importance of problems of environment and energy becomes larger, the development and distribution of energy-saving technology in the whole nation has become influential. This paper is intended, targeting on school buildings scattered all over the country, to evaluate the introduction and possibility of a terrestrial heat system which is in the first stage of introduction in the country, through energy consumption and efficiency in case where a terrestrial heat system is introduced. To do that, the author performed a qualitative analysis of the heat pump system using various terrestrial heat energy and the system introduced to existing school buildings and, through the analysis, made tentative evaluation on the most environment-friendly and energy saving type system. Also, the author performed simulation analysis using a currently typical school building standard and, on the basis of this result, conducted efficiency analysis of various heat pump systems. The conclusion according to synthetical analysis & evaluation can be summarized as follows. In case a heat pump system is introduced to a school building, it was deemed the investment in the early stage would increase, but the investment could be collected within 5~6 years through reduction of large operation expenses. Also, it was analyzed in case of terrestrial heat contracted heat mode using midnight electric power among heat pump systems, not only early investment but also operation expenses could be reduced to a great extent. Accordingly in case the system using terrestrial heat energy is applied to the school buildings that are to be newly built or repaired in the future, it will provide an object-lesson to students as well as contributing to energy saving.

  • PDF

An Analysis of the Self-reliance Rate by Element according to the Implementation of Zero Energy Certification System in School Facilities (학교시설 제로에너지인증제 시행에 따른 요소별 자립률 분석)

  • Meang, Joon-Ho;Kim, Sung-Joon;Lee, Seung-Min;Ko, Hyun-Su
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2021
  • The Ministry of Land, Infrastructure, and Transport (MOLIT) is implementing a zero-energy building (ZEB) certification to save energy for the building section and to accelerate the achievement of national greenhouse gases reduction goals in accordance with a new climate regime. In 2014, the MOLIT announced a plan for early activation of the ZEB, and in January 2016, the "Green Buildings Construction Support Act" was revised and established. In addition, the plan was established to gradually spread zero-energy buildings from the public sector in 2020 to the private sector by 2025. Therefore, this study analyzed the self-sufficiency rate of each energy factor according to the implementation of the zero energy building certification of school facilities that belong to the public sector and are included in the mandatory zero energy buildings from 2020.