• Title/Summary/Keyword: Sustain voltage

Search Result 187, Processing Time 0.023 seconds

A New Sustaining Driver for AC PDPs with Reduced Sustain Voltage by Half (새로운 유지구동전압 반감형 AC PDP 구동회로)

  • Lim, Seung-Bum;Cho, Pil-Yong;Chae, Soo-Yong;Kang, Kyoung-Woo;Yoo, Jong-Gul;Ko, Jong-Sun;Hong, Sonn-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.452-455
    • /
    • 2005
  • This paper proposes a new sustaining driver for AC PDP(Plasma Display Panel), which improves the performance of conventional circuit with reduced sustain voltage such as TERES(TEchnology of REciprocal Sustainer). In the TERES circuit, the sustain voltage is the half of general sustaining driver and there is no energy recovery circuit. The circuit proposed in his paper has an energy recovery circuit and removes surge currents. Although the energy recovery circuit is added, the number of active switching elements is the same as the TERES circuit. The operations of the proposed circuit are analyzed for each mode and its validity is verified by the simulations using PSpice program.

  • PDF

Three-level PDP Sustain circuits with Six-switches (Six Switch를 적용한 Three-level PDP Sustain Circuit)

  • Roh, Chung-Wook;Nam, Won-Seok;Han, Sang-Kyoo;Hong, Sung-Soo;SaKong, Suk-Chin;Yang, Hak-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.543-550
    • /
    • 2006
  • A three-level sustain circuit with six-switches for an ac plasma display panel (AC-PDP) drive is proposed. The proposed circuit features half the voltage stresses of sustain switches and clamp diodes and significantly reduced power losses compared with those of the conventional ones. This circuit, realizable with reduced cost of the semiconductor devices, gives a significant improvement in the power efficiency, essential for the design of a drive circuit for the AC-PDP. A comparative analysis and experimental results we presented to show the validity of the proposed sustainer circuit.

Influence of Sustain Voltage on Wall Charge and Wall Voltage Characteristics in AC-PDPs

  • Kim, T.Y.;Cho, T.S.;Kim, S.S.;Cho, D.S.;Kim, J.G.;Ahn, J.C.;Jung, Y.H.;Lim, J.Y.;Jung, J.M.;Ko, J.J.;Kim, D.I.;Lee, C.W.;Seo, Y.;Cho, G.S.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.119-120
    • /
    • 2000
  • Influences of sustain voltage on wall charges and wall voltages are experimentally investigated in surface AC plasma display panels(AC-PDPs), in which electrode gap and width are $80\;{\mu}m$ and $270\;{\mu}m$, respectively. The filling gas is Ne-Xe gas mixture, and total pressures 300 Torr. Also it is found that the more amount of Xe mixing ratio makes the less wall charge and voltage for sustain voltage ranged from 140 V to 222 V. The response time has been delayed by adding a small amount of Xe to Ne in comparison with that without Xe. It is also found that the wall charge and voltage are reduced by adding a small amount of Xe to Ne in comparison with those without Xe.

  • PDF

The effects of discharge gases in the voltage transfer curve of ac-PDP (ac-PDP의 전압전달특성에 미치는 방전가스의 영향)

  • Son, J.B.;Lee, S.H.;Kim, D.H.;Kim, Y.D.;Cho, J.S.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2233-2235
    • /
    • 1999
  • The ac plasma display panel(PDP) is a flat light-emitting gas discharge device. Discharge gases directly take effects to the discharge phenomena of ac PDP. Therefore it is necessary to understand the characteristics of the discharge gases. In this paper, we have studied the effects of discharge gases by voltage transfer curves which show the discharge characteristics of ac PDP and the change of the effective wall capacitance during a discharge which depends on lateral spreading of charge distribution and the strength of discharge. As gas pressure increases, memory margins increases. and the firing voltage of a mixed gas is lower than that of a single gas such as He gas. The minimum sustain voltage and the maximum sustain voltage or firing voltage increases with decrease in the frequency. The effective wall capacitance increases as the discharge strength that is, the gap voltage between discharge electrodes increases.

  • PDF

Wall Voltage Transfer Characteristics according to Address Bias Voltage

  • Lee, Y.M.;Jeong, D.C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.601-604
    • /
    • 2007
  • In this paper, we report the wall voltage transfer characteristic between sustain electrodes according to the address bias voltage in a 3-electrodes surface discharge type ac PDP by the VT close curve measurement technique. The result shows the change of wall voltage according to the gap voltage variation depends on the address bias voltage.

  • PDF

New Electrode Shape for High Xe-content Gas in AC PDP

  • Park, Cha-Soo;Choi, Joon-Young;Kim, Goon-Ho;Kim, Joong-Kyun;Kim, Dong-Hyun;Lee, Ho-Jun;Park, Chung-Hoo
    • Journal of Information Display
    • /
    • v.4 no.4
    • /
    • pp.13-18
    • /
    • 2003
  • One of the most important issues in AC PDP is the improvement of luminous efficiency. One possible method for achieving this aim is by increasing Xe partial pressure in discharge gas mixture. The increase of Xe ratio, however, causes the driving voltage to rise, even if brightness is increased. In this study, a new electrode shape is proposed. A test panel fabricated by using a new electrode shows that efficacy has improved by 25 % and sustain voltage has decreased by 20 % compared with the conventional structure.

Modified Ramp Reset Waveform for High Contrast Ratio in AC PDPs

  • Kim, Jae-Sung;Yang, Jin-Ho;Ha, Chang-Hoon;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.199-202
    • /
    • 2002
  • In general, the background light produced during the reset period deteriorates the dark room contrast ratio in AC PDP. In this paper, we propose a modified ramp reset pulse that can reduce the background light to imperceptible level. In the new reset waveform, the discharges between the scan and sustain electrodes are minimized by applying a positive bias voltage to the sustain electrode and only the weak discharges between the scan and address electrodes occur during the reset period. We adopted a MgO coated phosphor layer to get the same level of voltage margin in the new reset pulse scheme compared to that of the conventional ramp reset pulse one. As a result, the voltage margin is maintained at the same level and the dark room contrast ratio is improved dramatically.

  • PDF

A New Reset Waveform for Reducing Reset Period in AC-PDP (교류형 플라즈마 디스플레이의 리셋구간 단축을 위한 새로운 리셋 파형)

  • Kim, Gun-Su;Choi, Hoon-Young;Kim, Son-Ic;Kim, Jun-Hyoung;Jung, Hai-Young;Min, Byoung-Kuk;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1636-1639
    • /
    • 2002
  • We proposed the new reset waveform for reducing reset period. The square pulse is applied to the address electrode when the ramp pulse increases before a discharge occurs between sustain electrodes. If the discharge occurs between address electrode and X electrode, the wall charge is reversely accumulated between sustain electrodes compared with the applying voltage before the discharge occurs between sustain electrodes. So the next discharge more weakly occurs between sustain electrodes. If the more weak discharge is obtained, it can make the low background luminance and the high contrast ratio and reduce ramp up time in the ramp reset waveform.

  • PDF

Effect of Auxiliary Address Pulse on Face-to-face Sustain Electrode Structure in AC-PDP

  • Kim, Bo-Sung;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.605-608
    • /
    • 2007
  • The discharge characteristics of the face-to-face sustain electrode structure employing auxiliary address pulse are investigated under a sustain driving frequency of 20 kHz and various auxiliary address pulse widths (500 ns, $1{\mu}s$, $2\;{\mu}s$) in the 6-in. test panel (42-in. Full HD grade) with a pressure of 450 Torr and a 4 % Xe-content. The luminance and the luminous efficiency at the auxiliary address pulse width of 500 ns are improved more than these of $1\;{\mu}s$ and $2\;{\mu}s$. At the auxiliary address pulse width of 500 ns, the luminous efficiency shows about 0.96 lm/W at the auxiliary pulse of 90 V and the sustain voltage of 260 V.

  • PDF

Design And Implementation of a Novel Sustain Driver for Plasma Display Panel

  • Agarwal Pankaj;Kim Woo-Sup;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.403-405
    • /
    • 2006
  • Over the years, plasma display panel (PDP) manufacturers have impressed the flat panel display industry with yet another new product essentially having the merits of a larger screen size. Since larger size implies higher power ratings, voltage/current ratings of the power devices used have become a rising concern. Another important concern is the brightness of PDP, one way of increasing which is by operating the PDP at higher frequencies. In order to address the above issues, a transformer coupled sustain-driver for AC-PDP is proposed During the transition time, the two windings of the transformer greatly boost up the displacement current flowing through the panel capacitance and hence enable a fast inversion of the voltage polarity with practical values of resonant inductance. In the proposed topology, the resonant inductance can be increased by a factor of $(n+1)^2$ as compared to prior approaches. Increased inductance results in lower current stresses. Moreover, high frequency operation is possible by using higher value of n (turn ratio of the transformer). The operational principle and design procedure of the proposed circuit are presented with theoretical analysis. The validity of the proposed sustain driver is established through simulation and experimental results using a 42-in PDP

  • PDF