• Title/Summary/Keyword: Suspension systems

Search Result 528, Processing Time 0.025 seconds

Dynamic Performance Analysis for Secondary Suspension of Maglev Control Systems with a Combined Lift and Guidance (편심배치방식 자기부상 제어시스템의 2차 현가에 대한 동특성 해석)

  • Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.53-65
    • /
    • 1992
  • For improving the performance of maglev systems with a combined lift and guidance, it is suggested that the multivariable control systems and a secondary suspension should be added. The former is required to reject both track irregularities in vertical disturbances and wind gusts in lateral disturbances, and the latter to guarantee passengers against an unsatisfied criteria in ride quality. In this paper, bond graph model for the study of nonlinear dynamics of maglev systems with a combined lift and guidance is presented briefly. And, the secondary suspension is analyzed to understand the role of stiffness and damping factors in passive devices. Finally, LQG/LTR mulitivariable control systems are designed for the overall maglev systems with and without secondary suspension, and then the system performances in these two cases are evaluated.

  • PDF

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment (반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험)

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

Kinematic Design Sensitivity Analysis of Vehicle Suspension Systems using a Numerical Differentiation Method (수치미분에 의한 차량 현가장치의 기구학적 민감도 해석)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.128-137
    • /
    • 1998
  • A numerical approach for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. Compared with the conventional analytical methods, which require explicit derivation of sensitivity equations, the proposed numerical method can be applied to any type of suspension systems without obtaining sensitivity equations, once any kinematic analysis procedure is established. To obtain sensitivity equations, a numerical differentiation algorithm that uses the third order Lagrange polynomial is developed. The algorithm efficiently and accurately computes the sensitivity of various vehicle static design factors with respect to kinematic design variables. Through a suspension design problem, the validity and usefulness of the method is demonstrated.

  • PDF

Self-Tuning Modified Skyhook Control for Semi -Active Suspension Systems (자기동조기법을 이용한 반능동 현가장치의 수정된 스카이훅제어 구현 및 실험)

  • 정재룡;손현철;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.114-114
    • /
    • 2000
  • In this paper a self-tuning modified skyhook control for the semi-active suspension systems is investigated. The damping force generation mechanism is modeled We consider a 2 DOF time-varying quarter car model that permits parameter variations of the sprung mass and suspension spring coefficient. The modified skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters, according to parameter variations. The skyhook gains are designed in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype will be discussed

  • PDF

Design of Self-Repairing Suspension Systems via Variable Structure Control Scheme (가변구조 제어기법을 이용한 고장허용 현가장치 설계)

  • 김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.922-927
    • /
    • 2002
  • A variable structure control (VSC) based model following control system that possesses fault detection and isolation (FDI) capability as well as fault tolerance property is proposed. The nonlinear part of the proposed control law. whose magnitude is determined by sliding variables, plays the role of suppressing fault effect. Thus, approximate fault reconstruction is also possible via the analysis of sliding variables. The proposed algorithm is applied to an active suspension system of pound vehicles to verify its applicability.

Development of Practical Semi-active Suspension Control System

  • Takahashi, Hideaki;Zhang, Feifei;Mishima, Kiyoshi;Ito, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.278-281
    • /
    • 2003
  • The focus of this research is to realize the function which is equivalent to the active suspension system, with controlling semi-active suspension through the attenuation of power variable damper in lower cost and smaller energy. Actually some semi-active suspension systems have been adopted, but they are not sufficient in performance. The authors intended to develop more effective and practical system and applied the optimal control technique. The results of experiments with practical suspension system showed a degree of improvement of comfortableness.

  • PDF

Design of Robust PI Controller for Vehicle Suspension System

  • Yeroglu, Celaleddin;Tan, Nusret
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.135-142
    • /
    • 2008
  • This paper deals with the design of a robust PI controller for a vehicle suspension system. A method, which is related to computation of all stabilizing PI controllers, is applied to the vehicle suspension system in order to obtain optimum control between passenger comfort and driving performance. The PI controller parameters are calculated by plotting the stability boundary locus in the $(k_p,\;k_i)$-plane and illustrative results are presented. In reality, like all physical systems, the vehicle suspension system parameters contain uncertainty. Thus, the proposed method is also used to compute all the parameters of a PI controller that stabilize a vehicle suspension system with uncertain parameters.

Fuzzy Control of the Seat Suspension System Considering the Acceleration of a Driver's Head (머리 가속도를 고려한 의자 서스펜션의 퍼지제어)

  • Kong Kyoung-chul;Jeon Doyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.572-577
    • /
    • 2005
  • This paper applies the fuzzy logic controller to a semiactive seat suspension system in order to obtain the better ride comfort in constraint of specific rattle space. The seat suspension system used for this research is a scissors-type one with the MR (Magneto Rheological) fluid damper. Since a seat suspension system with a driver can not be exactly modeled, it is effective to control with the fuzzy logic controller. The rule was carefully tuned to effectively reduce the vibration transmitted to a driver. The on-road ride was realized on a hydraulic excitor and the result shows that the fuzzy controller has reduced the vibration of a seat suspension system compared to the continuous skyhook controller.

Design of HDD Load/Unload Suspension Using Shape Memory Alloy (형상기억합금을 이용한 HDD Load/Unload 서스펜션의 설계)

  • Lim, Soo-Cheol;Park, Young-Pil;Park, No-Cheol;Choi, Seung-Bok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 2006
  • In this work, we propose a new type of HDD Load/Unload(L/UL) suspension featuring shape memory alloy(SMA). The mechanical and thermal properties of the SMA film with respect to the material phase states are experimentally estimated and the SMA film is carefully integrated to the suspension. In order to obtain the desirable dynamic characteristics of the suspension during L/UL process, the design parameters of the SMA film such as geometric properties are determined by considering the vibration modes of the suspension related to the L/UL performance. After analyzing the modal characteristics of the proposed suspension, L/UL performance is evaluated through L/UL simulation by observing the vibration motion and minimum flying height of the slider during L/UL process.

  • PDF

New Milliactuator Embedded Suspension (밀리엑츄에이터가 내재된 신규 서스펜션)

  • Yoon, Joon-Hyun;Hong, Eo-Jin;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.477-482
    • /
    • 2001
  • To realize higher track density of HDD, the servo bandwidth should be higher, however, is limited by the mechanical resonances of the arm, coil of the VCM and ball bearing pivot. The dual-stage actuator systems have been suggested as a possible solution. For the dual-stage actuator systems based on the suspension, the suspension resonance frequencies in the radial access direction are important factors to increase a servo bandwidth, however the improvement of these frequencies may affect the shock resistance performance and spring constant. The slider's flying stability can be deteriorated by the change of a vertical stiffness. In this work, we have investigated a suspension design scheme possessing a milliactuator for dual-stage actuator systems and also achieved higher mechanical characteristics. Design parameters are deduced by finite element analysis with sensitivity function. It is confirmed that the proposed suspension with the milliactuator has the capability of fine tracking motion, due to its hinge structure on the spring region, and achieves higher mechanical resonance frequencies in the radial access direction with a high-shock resistance and a low-spring constant.

  • PDF